
Message Passing Fault Tolerance Design at
Socket Level

Marcela Castro, Dolores Rexachs and Emilio Luque1

Abstract— We present a design of a transparent
fault tolerance middleware for message passing appli-
cations. The approach consists in changing the default
socket model avoiding being unexpectedly closed due
to a remote node failure. Moreover, a pessimistic log-
based rollback recovery protocol added to this level
makes possible restarting and re-executing a failed
parallel process until the point of failure indepen-
dently of the rest of the processes. All this work
is made automatically and in a transparent way for
the application. This service can be optionally acti-
vated at runtime at user level. The models used for
protection and recovering application and detection
of failures are based on RADIC architecture. We
have tested this middleware by executing a master-
worker (M/W) and Single Program Multiple Data
(SPMD) applications which follow different commu-
nication patterns.

Keywords— Fault-tolerance; High-Availability;
RADIC; message passing; socket

I. Introduction

NOWADAYS the need of having fault tolerance
(FT) solutions for parallel applications is indis-

putable and they are regarded as a mandatory re-
quirement for executing critical applications which
last more than the MTBF of the host cluster. The
risk of suffering a stop due to a node failure is too
high for not taking preventive measures.

Although Fault Tolerance in High Performance
Computing (HPC) systems has been extensively re-
searched in recent years offering different approaches,
there is not yet a FT solution where the failures are
completely hidden from the application avoiding any
modification at user’s code.

When a message passing application is executing
in a cluster and suddenly one of the node fails, the
communications established with the parallel pro-
cesses in it also fall down. These communication
errors would propagate causing fatal errors to the
rest of the parallel processes.

The Fig. 1 shows a typical communication level
diagram of a message passing application. A failure
at physical o networking levels usually spreads up er-
rors to higher levels causing an undesirable execution
stop of the application.

Socket is a de facto standard API of POSIX Op-
erative Systems to use the transport level protocols
like TCP or UDP. This API is normally used for
interchanging data packages between two executing
processes in a cluster. The socket model is intended
to do that then, it does not provide a failure model
able to recover the connection from fatal node fail-
ures. However, controlling socket errors caused by

1Computer Architecture and Operating Systems De-
partment,Universitat Autònoma de Barcelona, mcas-
tro@caos.uab.es; {dolores.rexachs; emilio.luque}@uab.es

a fall of remote peer would prevent the propagation
of them to the upper levels of the message passing
communication library and application.

The research work Reliable Network Connections
[1] describes rocks, an approach which changes the
normal behaviour of the diagram state of socket API.
The new API automatically detects network connec-
tion failures, including those caused by link failures,
extended periods of disconnection, and process mi-
gration, within seconds of their occurrence. When
this kind of communication error happens, instead
of closing unexpectedly the socket, the IP address
is replaced by the new location of remote peer and
the broken connection is recovered without loss of
in-flight data as connectivity is restored.

Clearly, establishing reliable network connections
instead of normal ones would contribute to provide a
FT solution for message passing application avoiding
unexpected fatal errors.

Message passing applications usually rely on
rollback-recovery protocols to recover from failures.
Most of these protocols were explained and classified
by E.N. Elnozahazy [2]. RADIC Redundant Array of
Distributed Independent Controllers [3] is a fault tol-
erance architecture for message passing applications
that defines a proper model to apply a rollback re-
covery protocol using uncoordinated checkpoint and
pessimistic log-based on receiver.

The FT strategy of this research work basically
consist in modifying the socket model used by mes-
sage passing communication library and parallel ap-
plication (upper levels indicated in Fig. 1). The new
model combines the use of reliable network connec-
tions with the models of RADIC architecture.

The aim is assuring the execution ends successfully
in spite of node failure for whatever message passing
library is in use and avoiding making changes in the
program or in the library. Moreover, we consider im-
portant to let the user choose whether the execution
uses FT or not.

Fig. 1. Socket Level

II. Related Works

The approaches used to add FT in a message pass-
ing application can be classified in three groups ac-



cording to [4]. First, the application can be changed
adding the FT mechanisms. In relation to this ap-
proach, we can mention research works like [4] or [5]
which give solutions that facilitate the programming
tasks either defining FT programming patterns or
adding new libraries to be called. Although this first
group of FT solutions is likely to reach the best fit,
the programing cost is high and not always applica-
ble if the source code is not available. In the second
group we can categorize the research works which lo-
cate FT algorithms in communication library. Most
of the used solutions belong to this group, because
the application does not need to be changed. We
regard this kind of tools as an extension of the MPI
communication library. MPICH-V Project [6] is an
example of this case. Moreover, RADIC was previ-
ously implemented using this kind of strategy [3]. Al-
though the application is not changed, it needs to be
compiled again with the modified communication li-
brary. that could be a problem if we only have the ex-
ecutable programs. Another drawback of this group
is the need of adapting each MPI implementation to
the specific FT strategy. Finally, available solutions
at system level are also transparent for the applica-
tion, but, most of them are very sensitive to changes
in operative system versions and they are most dif-
ficult to adapt to other architectures. An example
using this last category is DMTCP [7], a checkpoint
and restart tool for distributed applications which
can be also used for message passing applications.
However, scripts for checkpoint and restarting must
be provided by the user. Our work fits in this last
category as it works at system level.

On the other hand, there are three requirements
to be covered by rollback recovery FT approaches.
First, Protection of information/state to continue
computation. Second, Detection of the failure and
last, Restart the computation reconfiguring the sys-
tem to isolate the damage component and mask the
errors. Most FT solutions are not fully developed
with all the requirements at system level.

For example, BLCR [8] is a well-known project of
kernel-level process checkpoint. It can be used with
multithreading programs but it does not support dis-
tributed or parallel process. This tool covers the pro-
tection and restarting requirements. The detection
has to be added by the user.

DMTCP [7] (Distributed Multithreaded Check-
pointing) does not provide the detection requirement
to be considered a FT solution.

DejaVu [9] is a transparent user-level fault toler-
ance system for migration and recovery of parallel
and distributed applications. It provides the three
mentioned requirements and implements a novel
mechanism to capture the global state named online
logging protocol. Although uncoordinated check-
points are performed, it uses a coordinated mech-
anism to assure the global consistent state of them.
This property can be a drawback to scale properly.
In addition, DejaVu does not implement any log mes-
sage protocol, so all parallel processes are forced to

recover and restart in case of a node failure.
RADIC [3] model meets the requirements of detec-

tion, protection and recovery. The behavior is com-
pletely distributed on the nodes of the clusters and
the overhead added during the protection phase and
in recovery is independent from the number of pro-
cesses. This property is essential nowadays when the
numbers of processors in the clusters are increasing
so much. To protect it uses log message based on re-
ceiver rollback recovery protocol which facilitates the
recovery tasks, but adding some overhead during the
protection phase. The middleware we are presenting
is based on RADIC and works at user level.

III. Design Requirements

This section defines the two basic requirements to
take into account during the design of the middle-
ware. The first is that the design has to be located
at socket level in order to achieve application and
library independence. The second requirement is
having properties of transparency, distributed, de-
centralization and scalability, which are going to be
inherited from RADIC. This section begins with a
brief explanation of RADIC architecture. Previous
research papers can be consulted for detailed infor-
mation [3]. Finally, the concept of reliable sockets
is defined, outlining how we can include them and
what is required to do it.

A. Radic Architecture

RADIC architecture[1] is based on uncoordinated
checkpoints combined with pessimistic log-based on
receiver. Critical data like checkpoints and message
logs of one application process are stored on other
node different from the one in which the parallel pro-
cess is running. RADIC defines the following two
components also depicted in Fig. 2

• Observer (Oi): this entity is responsible for
monitoring the application’s communications
and masks possible errors generated by commu-
nication failures. Therefore, the observer per-
forms message logs in a pessimistic way as well
as it saves periodically the parallel process state
by checkpointing. Message logs and checkpoints
are sent to protector Ti-1. There is an observer
Oi attached to each paralell process Pi.

• Protector: (Ti) There is one running on each
node which can protect more than one appli-
cation process. In order to protect the appli-
cation’s critical data, protectors store that on
a non-volatile media. In case of failure, the
protector recovers the failed application process
with its attached observer. Protector uses heart-
beat/watchdog mechanism to detect neighbour
failures and recover and reconfigure in these
cases.

B. Reliable sockets

TCP is a reliable transport protocol between two
peers in a sense that every packet sent by one peer
is assured to be delivered and received by the other
peer respecting the sent order. Each peer uses send



Fig. 2. RADIC diagram - Diagonal arrows: Oi sends the
critical data to its protector Ti-1 - Horizontal arrows:
Protector Ti sends heartbeat signal to Ti-1

and receive buffers managed by flow-control to ac-
complish this reliability.

However, the TCP failure model does not provide
a mechanism to recover the connection from a per-
manent failure of one of the peers, because this kind
of situation is out of the scope of a transport pro-
tocol. Usually, the applications running on POSIX
Operative System use socket API as I/O network in-
terface to receive and send data through a TCP/IP
connection. TCP connection failures occur when the
kernel aborts a connection. This could be caused by
several situations such data in the send buffer goes
unacknowledged for a period of time that exceeds
the limits on retransmission defined by TCP, or re-
ceiving a TCP reset packet as a consequence of the
other peer reboots or closes the socket unexpectedly.
Furthermore, when the kernel aborts the connection,
the socket becomes invalid for the application.

If the application does not have a proper function-
ality to recover this invalid socket, usually the exe-
cution is aborted due to the unexpected situation.
Rocks architecture proposed by V.Zandy [1] de-

fines the operation of a reliable socket by changing
the default state socket diagram by a new one. This
new operation does not allow the socket to be closed
by such exceptional situation. Instead of that, the
socket remains in a suspended state while a new ad-
dress of the remote peer is got and the socket is re-
configured. This new socket behavior affects the pro-
cess, not the internal TCP socket state maintained
by the kernel.

This general idea is applicable to our design, but
not the detailed behavior and implementation. Rocks
is applied to distributed and mobile applications and
not for message passing ones.

We need to incorporate to this socket level the
functionality of the rollback recovery protocol de-
fined by RADIC models. To accomplish this task,
we designed a new behavior model at socket level
considering reliable sockets and pessimistic based on
receiver rollback recovery protocol.

IV. Design

Following the basic idea of reliable network con-
nections, the FT logic needed for protection and for
restarting a process is added by interposing socket
functions as socket, bind, listen, connect, send and
recv. The default socket state is changed for not al-
lowing the socket be closed when remote peer falls
down. Next, the socket does not become invalid for
the upper level process. RADIC recovery model de-
termines that the failed processes are restarted in
the protector node. As a result, the observer is able

to reconfigure the socket with this new address and
then, the lost connection with the restarted process
is re-established.

RADIC components are involved in the three well
differenced functional phases: protection, detection
and recovery. The next subsections explain how
these components behave to accomplish these phases.

A. Protection Phase

The tasks related to save the consistent state of
the application are considered into this functional
phase of protection. The observers are responsible
for doing checkpoint, interpose receiving messages
and send them to their protectors. The Fig.3 shows
the connection (1) between each observer (Oi) with
its protector (Ti-1) used to send this critical data.
Observers are also in charge of building the reliable
connections. A parallel canal (2) with the same
characteristics is opened for each socket established
by the application. This canal, named control-ft
socket, is used by the two peers observers connected
in order to interchange their process identification
and acknowledgement data. Control-ft socket is
used during Message log, Checkpointing and Restart-
ing which are detailed later in next Section V in sub-
sections V-A, V-B and V-C respectively.

Protectors collaborate in this functional phase re-
ceiving critical data from their observers and save it
in stable storage (1).

Fig. 3. RADIC Protection Model

B. Detection and Recovery Phases

The detection is carried out by protectors sending
a heartbeat to their predecessor neighbour. In Fig.
4 the line numbered with (3) represents the connec-
tion of each protector with its protected node. On
the other hand, when the observer detects a commu-
nication error while a socket is sending or receiving
packages, the observer executes the next diagnostic
procedure. First of all it tries a configurable number
of times to reconnect the socket. If the connection
was lost due to a checkpoint of the remote peer, it is
likely that it is reconnected in this first retrying, as it
was described previously in protection phase IV-A.

In case the observer could not reconnect, it asks
to the protector of the failed peer for the state of
the process. The protector answer could be that the
node where the process is executing is still alive, or
that the process is doing checkpoint or that it is in
recovering due to its node host has a failure. If one of
the first two options are received, the observer keeps
recovering the lost connection retrying as it was done
in the first stage of this procedure. The third answer
includes the new IP address of the recovering process,



so the socket is reconfigured before retrying. When
the remote process is recovered, the connection is
established after this stage. Lastly, the failed send
or recv operation is launched again.

As an example of the diagnostic procedure, Fig.
4 shows the detection and recovery done if N3 fails.
The observer O4 connected to such node, after retry-
ing unsuccessfully on reestablishing connection, asks
for the state to the protector using (4). Protector
of N3 (T2) detects node failure using heartbeat or
by receiving an diagnostic from an observer. Mean-
while, protector T4 establishes (5) with T2 to con-
firm that connection with T3 is lost. As a result, T2
recovers and restarts P3 and O3 in N2. O3 reads
message log previously saved by T2 using(6), looks
for a new protector T1 and sends it a new check-
point. Finally, N4 is assigned to a new protector
T2. Consequently, T4 sends hearbeat signal to it by
using (3) and the O4 sends its critical data to T2
by using (5).

Fig. 4. RADIC Detection and Recovery Model

V. RADIC using Secure Sockets

Taking into account that RADIC defines that the
observer component is that one attached at each
parallel process, the interposition library at socket
level corresponds to this. Consequently, the library
has to accomplish all the functionality of this compo-
nent defined by RADIC models. This paper is spe-
cially focused on defining this entity, because it is di-
rectly affected by the approach adopted. In contrast,
the protector can be seen as an independent process
that only interacts with other RADIC components
like observers and other protectors. The function-
ality of protectors is completely defined, tested and
explained in previous research works.

This section describes the three pieces of function-
ality needed to be incorporated at reliable socket
level to get a RADIC observer. These pieces are
message log, checkpointing and restarting. Each of
them presents different challenges to face, which are
explained in the following subsections including the
way they are overcomed.

A. Message Log

A pessimistic log-based on receiver rollback-
recovery protocol has to be designed at socket level
in order to assure that the state of each process is
always recoverable. This kind of procedure can add
some overhead during the normal execution (protec-
tion phase) but this way simplifies the recovery tasks
because the effects of a failure are confined only to
the processes that need to be restarting.

Log-based rollback-recovery assumes that all non-
deterministic events can be identified and their corre-
sponding determinants can be logged to stable stor-
age. Receiving a packet is considered a nondetermin-
istic event to log.

At first sight, it seems a simple challenge that can
be solved interposing recv function and sending the
received message to the protector afterwards.

But pessimistic logging protocols are designed un-
der the assumption that a failure can occur after any
nondeterministic event in the computation. This as-
sumption is “pessimistic“ since in reality, failures are
rare. This property stipulates that if an event has
not been logged on stable storage, then no process
can depend on it. For this reason, a sender of a
message waits an ack which indicates the message is
completely saved in stable storage. To accomplish
this requirement of acknowledgment of each received
and saved package, a communication between the
two observers involved in each peer is established,
named control-ft socket. We cannot use the appli-
cation socket being interposed to send and receive ac-
knowledge data because we can be interfering on the
application protocol affecting the integrity of their
messages.

Therefore, for each socket established by the up-
per level, the interposing library creates a new socket
named control-ft socket used to interchange con-
trol data between two observers intercepting send
and recv functions.

The Fig. 5 shows how a message is treated since
it is generated from the sender process. The send
operation is interposed by sender observer Os which
sends a numerated acknowledgement requirement to
the receiver observer using the control-ft socket
canal, represented by dotted lines. The message is
sent to the receiver using the real socket, depicted
as solid lines. The receiver observer Or interposes
the recv operation and receives the acknowledgement
requirement through the control-ft socket and the
application message through the real socket. Ob-
server Or sends the message to its protector. Once
Or receives the ack of save operation, sends the ack
to sender and delivers the message to process finish-
ing the recv interposed. Observer Os receives the
ack indicating this message is correctly saved and
it is not necessary to be resent anymore. Lastly,
the send interposition is finished and the process re-
sumes the processing. The gray block represents the
tasks added by the logging message protocol during
failure-free operation.

B. Checkpointing

Each parallel process has to be checkpointed pe-
riodically in order to save its state. In a log-based
protocol, checkpointing is performed in order to limit
the amount of work that has to be repeated in execu-
tion replay during recovery. This task is performed in
an uncoordinated way, thus no centralized or block-
ing mechanisms are needed in the sake of scalability.

During the checkpoint, all the active communi-



Fig. 5. Message log: Real sockets: Solid lines - Control-Ft
socket: dotted lines - RADIC sockets: dashed lines

cations of the observed parallel process need to be
closed. The BLCR library being used to checkpoint
processes recommends this procedure for two reasons
[8]. First, to avoid loosing in transit data, and sec-
ond, because the socket and its corresponding con-
nections have to be established again from scratch
during the restarting in a new cluster node.

Therefore, all the opened sockets have to be
closed before checkpointing and re-opened and re-
established after it. To accomplish this task we need
to keep the following data as it is not provided by
the operative system:

• Virtual socket: It is the socket number handler
known by the parallel process get it during a
socket or accept function.

• Socket Type: This type can be connect, accept
or listen. It is used to identify which operation
has to be performed to re-establish the socket
after checkpoint or during restart.

• Re-establish parameters: The parameters
used originally to execute the function connect,
accept or listen interposed in order to re-execute
the command after checkpointing or restarting.

• Real socket: Socket number actually being in
use to intercommunicate with remote process,
getting during a re-open operation after check-
pointing or restarting. The operative system de-
livers different id socket handler when a socket
or accept function is re-executed. A one-by-one
relation between virtual and real socket number
is kept. During the interposition the observer
changes the virtual socket id referenced by the
application by this real socket number. There-
fore, the function is performed using the current
real opened socket.

There is a problem to be solved when an ac-
cept type socket is re-established. During accept
re-execution multiple observers clients can be try-
ing to re-connect at the same time. The server ob-
server has to be able to recognize which is the other
peer in order to continue the control message logging
of the broken socket. Using operative system avail-
able functions, the remote ip and port can be known
but this data is not enough to identify uniquely the
observer client process previously connected to this
socket due to more than a parallel process can be
executing in one node.

To accomplish this identity validation task, each
observer sends a unique parallel process identifica-
tion (pid) trough the control-ft socket. Con-
sequently, during the re-establishment of an accept
socket the former client connected can be uniquely
identified to continue the log message associated to
the virtual socket opened by the application.

For instance, a master accepts connections coming
from two workers. They are connected using sock-
ets 4 and 6 respectively. The socket 4 has socket 5
as control-ft and the 6 has the 7. The sockets are
closed before checkpoint. After finishing checkpoint-
ing, the accept functions are executed to re-establish
connections. But two observers associated to the two
workers are trying to re-connect the unexpectedly
closed socket at the same time. After connecting,
the remote observer sends its identification using the
control-ft. In this way, the server can determine
which real socket corresponds with virtual socket 4
and which with the 6.

C. Restarting

When a node fails, the protector recovers the pro-
cesses which were being saved in it using the last
checkpoint received. Each process is restarted with
its corresponding observer. This observer detects the
restarting state and its behavior is different until the
process arrives to the point of failure. This point
is reached when the last received message in log is
consumed by the restarting parallel processes.

Two important design decisions were made in or-
der to get RADIC restart model at socket level. First
of all, the sockets type listen which were active on
failed host, are launched on this new host. These
sockets are needed to be ready before re-connecting
the sockets type accept being re-executed. In the
second place, to re-execute the parallel process until
the point of failure, the observer in restarting mode,
intercepts the recv function and the contents is ex-
tracted from the log message previously saved by the
protector.

VI. Experimental Results

We test the fault tolerance middleware in order to
validate the functionality of protection and recovery
phase. The principal aim is to assure that the mech-
anism used to build the reliable tunnel connections
and the log message protocol are working correctly.
Our second aim is to know the overhead added in
execution time by protection and recovery processes.

The experiments were executed on a cluster
formed by 4 nodes Intel R© CoreTM i5-650 Processor
6GB RAM, Network Gigabit Ethernet. The OS used
is Ubuntu 10.04 Kernel 2.6.32-33-server.

We use a sum of matrices Master/Worker and
a heat-transfer SPMD applications based on TCP
sockets, which follow different communication pat-
terns, in order to test the interconnection socket
model performed after checkpoints and in restart.

We use three ways of execution. First, the normal
without FT No FT, second using FT but without



any node failure FT F0 and lastly, we inject a fail in
the process executing on the N3 (P3) some events
after the first checkpoint, 50 in M/W FT F50 and
100 in SPMD FT F100.

Two selected experiments are shown in Figs. 6 and
in Fig. 7 depicting the throughput (rows/seconds
or iterations/seconds) achieved during the three-way
executions.

The M/W was executed with 4 workers, one per
node. Fig. 6(a) shows master execution and Fig.6(b)
represents one of the worker process where the fail-
ure is injected. In all cases, the red line No FT is
slightly upper the blue one FT F0. In MW experi-
ment 2.61% of overhead in execution time was added
by the protection system. The fall was caused by the
failure. The master throughput is affected some time
after the worker falls, while the worker is restart-
ing, processing the log message. The worker shows
a maximum throughput due to the re-executing pro-
cedure using local log message. The total execution
time of FT F50 was of 888seg, 15.78% more than
the original. The circles show the two checkpoints
triggered during FT F0 and FT F50 executions.

(a) MW Master process

(b) MW Failed Worker process

Fig. 6. Master/Worker evaluation results.

The heat-transfer SPMD was executed with 4 pro-
cesses, one per node. Fig. 7 graphs the execution of
the process chosen to inject the failure during FT
F100. The overhead of executing with FT but with-
out failure was of 3.24%. When a fail is injected FT
F100 the total execution time was of 6.76% com-
pared with the normal execution without FT No FT.
The circles show the 4 checkpoints performed during
FT F0 and FT F100 executions.

VII. Conclusions and Future Work

The results show that it is possible to build a trans-
parent FT system at reliable socket level able to pro-

Fig. 7. SPMD evaluation results

vide no fail stop to message passing application inde-
pendently from the communication library. In that
way, the user is not forced to choose a specific com-
munication library to get the fault tolerance facilities
and the library may be chosen.

We are working on a set of experiments to prove
we can use this middleware to fault tolerance appli-
cations using either MPICH or Open-MPI.

Future work will include as well an analysis of the
scalability of the solution, testing if the speedup of
applications being protected is kept in spite of using
fault tolerance.

Acknowledgments

This research has been supported by the MICINN Spain un-
der contract TIN2007-64974, the MINECO (MICINN) Spain
under contract TIN2011-24384, the European ITEA2 project
H4H, No 09011 and the Avanza Competitividad I+D+I pro-
gram under contract TSI-020400-2010-120.

References

[1] Victor C. Zandy and Barton P. Miller, “Reliable network
connections,” in Proceedings of the 8th annual interna-
tional conference on Mobile computing and networking,
New York, NY, USA, 2002, MobiCom ’02, pp. 95–106,
ACM.

[2] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and
David B. Johnson, “A survey of rollback-recovery pro-
tocols in message-passing systems,” ACM Comput.Surv.,
vol. 34, no. 3, pp. 375–408, September 2002.

[3] Leonardo Fialho, Guna Santos, Angelo Duarte, Dolores
Rexachs, and Emilio Luque, “Challenges and issues of
the integration of radic into open mpi,” in 16th European
PVM/MPI Users’ Group Meeting on Recent Advances in
PVM and MPI, 2009, pp. 73–83.

[4] William Gropp and Ewing Lusk, “Fault tolerance in mes-
sage passing interface programs,” Int. J. High Perform.
Comput. Appl., vol. 18, pp. 363–372, August 2004.

[5] Sriram Rao, Lorenzo Alvisi, Harrick M. Viny, and Depart-
ment Computer Sciences, “Egida: An extensible toolkit
for low-overhead fault-tolerance,” in In Symp. on Fault-
Tolerant Comp. 1999, pp. 48–55, Press.

[6] Aurelien Bouteiller, Thomas Hrault, Graud Krawezik,
Pierre Lemarinier, and Franck Cappello, “MPICH-
V Project: A Multiprotocol Automatic Fault-Tolerant
MPI,” IJHPCA, vol. 20, pp. 319–333, 2006.

[7] Jason Ansel, Kapil Arya, and Gene Cooperman,
“DMTCP: Transparent checkpointing for cluster compu-
tations and the desktop,” in IPDPS, 2009, pp. 1–12.

[8] Paul H. Hargrove and Jason C. Duell, “Berkeley lab check-
point/restart (blcr) for linux clusters,” Journal of Physics:
Conference Series, vol. 46, no. 1, pp. 494, 2006.

[9] Joseph F. Ruscio, Michael A. Heffner, and Srinidhi
Varadarajan, “Dejavu: Transparent user-level checkpoint-
ing, migration, and recovery for distributed systems,”
Parallel and Distributed Processing Symposium, Interna-
tional, vol. 0, pp. 119, 2007.


