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Abstract— During the last decade, virtualization
technology has become increasingly important, hav-
ing the potential to optimize the usability of both high
performance and high throughput computing as well
as server consolidation by reducing operational costs
and facilitating green computing. Furthermore, this
technology is one of the key factors that have allowed
the growth of cloud computing and its adoption over
the Internet, in what is nowadays, a software as a ser-
vice oriented industry. Virtualization, by multiplex-
ing the physical hardware resources, enables multiple,
independent, operating systems and applications to
run on a single machine. In order to make this effi-
cient and acceptable to users, the physical resources
of a computer must be well managed, being the sys-
tem’s main memory one crucial factor.
This paper analyzes, under a unified criteria, current
alternatives to estimating working set sizes in virtual
machines, focusing on Least Recently Used (LRU)
miss rate curves. We also present a generic frame-
work that serves as a potential testbed for comparing
different stack distance algorithms and page monitor-
ing policies. Finally, we propose applying different
stack distance algorithms to virtual machine Working
Set Size (WSS) estimations.

Keywords— virtual machines, virtualization, mem-
ory management, hypervisors, memory overcommit-
ment, miss rate curves, stack distances.

I. Introduction

VI rtualization technology, introduced by IBM
in the mid 1960s, is not a new concept, yet

it is only in the past few years that it has become
a hot topic in academia and industry research,
after VMWare released the first commercial x86
virtualization product in 1999. Since then, this
technology has become increasingly important and
plays an important role in computer science. The
term virtualization can be ambiguous, as it is
widely used in many different contexts, referring to
emulation, operating system (OS) containers and
system virtualization. We adopt the later meaning,
where, through the use of hypervisors, or Virtual
Machine Monitors (VMM - used interchangeably in
this document), physical hardware is multiplexed
to allow multiple, independent, OS and userspace
applications to run simultaneously. This has been
beneficial to the IT industry in many ways, allowing
easier systems development (by deploying and
testing), administration and maintainability, while
at the same time, greener and less expensive data
centers. In order to make virtualization efficient
and acceptable to users, the physical resources
of a computer must be well managed. It is the
responsibility of the VMM to present to its guest
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virtual machines (VM) the illusion of a non vir-
tualized computer system, while satisfying Popek
and Goldberg’s requirements [1]. All these benefits
come, nonetheless, with a performance cost when
compared to a non virtualized environment. This
cost is the overhead caused by the virtual layer.
Current research efforts aim at minimizing this
overhead, as user acceptance depends on it.

From a von Newmann perspective, while CPU,
device IO and main memory can all be virtualized, it
is memory that is least amenable to multiplexing [2].
The difficulties of memory management at a hy-
pervisor level can be seen as (i) address translation
overhead, and (ii) memory overcommitment, or
overbooking. Although they are not directly related
to each other, they both have a profound impact on
the performance and usability of virtual machines.
This paper deals with challenges that come when
overcommiting memory. When running under a
virtual machine, access to the physical memory must
be limited to only the VMM, otherwise, if a guest
kernel does so there is no guarantee against data
corruption and guests crashing each other. A guest
OS kernel has the same vision of virtual memory as
it would in a traditional environment, yet in reality
the VMM acts as an intermediate between it and
the physical resources.

The rest of this paper is organized as follows: Sec-
tion II explains basic concepts of memory overbook-
ing and the challenges that arise when balancing
memory among virtual machines. In Section III, we
go through recent research and state of the art on es-
timating memory demands in virtual environments,
focusing specifically on LRU based miss rate curves.
Section IV introduces our KVM based framework for
trapping guest memory accesses and analyzing them
both online and offline. Then, in Section V we pro-
pose adding well known LRU miss rate algorithms
into the framework and what we expect to gain from
this when compared to current alternatives. Finally,
Section VI concludes our work.

II. VMM Memory Overcommitment

Overcommiting a resource is creating the illusion
that this resource is actually more available than
it really is. In the case of virtualization, it is quite
common for the sum of memory assigned to all vir-
tual machines (VMs) to be larger than the physical
RAM the host possesses, as illustrated in Figure 1.
Today most, if not all, important hypervisors - Xen,
KVM, VMWare - deal with overcommiting memory.



Fig. 1. Overcommiting memory for n virtual machines, n > 8

There are two common techniques [3] that allow
memory overcommitment, and have been applied,
in one way or another, to commonly used VMMs.
The first method takes advantage of the fact that
different virtual machines are possibly running the
same tasks throughout part of their lifetime, for
example: checking email, editing documents and
browsing the Internet. By detecting similar pages,
based on their content, virtual machines can share
a single copy and therefore save frames for other
purposes. When a page is modified, the copy is
broken with standard copy-on-write techniques.

The second technique uses a special, balloon
driver, that enables the VMM to give or take away
physical memory from its virtual machine guests.
It is commonly implemented as a kernel space
driver located within the hypervisor and the guests.
Further, it does not require any downtime, being
done dynamically on the fly. The host can give the
guest’s balloon instructions to expand or shrink to
a certain size; the guest cooperates but does not
directly control the balloon. When the host wants to
reclaim memory from the guest, it is said to inflate
the balloon, by allocating physical pages within
the guest’s balloon. This balloon expansion makes
the guest have less memory and forces its natural
way of dealing with this situation: if enough free
memory, then return a portion of this, otherwise
it must swap from disk. The pages absorbed by
the balloon can then be released back to the host
system which, presumably, has a more pressing need
for them elsewhere. Letting air out of the balloon
makes memory available to the guest once again.

The primary reason for ballooning is to better
use memory that would otherwise be wasted by a
virtual machine. Operating systems are in charge of
maintaining information about used and available
memory, so when running on a virtual machine, the
host system has no way of knowing or accessing this
information. This implies that when an application
running on a VM frees memory, only the guest OS
will know about it, yet the host OS will never ac-
tually free the corresponding frame(s), thus keeping
idle or stale data. For example, if a guest normally
uses 300Mb of memory, but for some small amount
of time it peaked at 900Mb, there will be 600Mb of
underutilized memory. Ballooning by itself does not
know about guest memory needs [4] and, therefore,
cannot determine how it will impact the guest when

it reclaims memory from it.

This leads to a memory balancing problem, where
the idea is to reduce the maximum number of re-
sources required for virtual machines, thus getting
the most work done at the lowest cost in ever-
changing environments. This allows physical frames
to be distributed efficiently among VMs, and can ad-
dress concerns such as: (i) If a VM has more memory
assigned to it than it actually needs, and on the same
machine, another VM has a high swapping rate, indi-
cating it has a memory pressure, transfer some mem-
ory among the machines to balance the load and so
both can provide a better quality of service. (ii) If
two or more VMs have similar workloads and are all
under memory pressure, one can have more priority
over the others, and thus its more important for it
to get more memory. Therefore the other machines
can give up their memory rights, favoring the most
needed VM.

This can be seen as a scheduling problem, where
the physical memory must be distributed efficiently
among guest virtual machines; much like what a
CPU scheduler is to processes in an OS. However,
certain problems come with this:

1. The future of memory demands of a virtual ma-
chine workload can only be estimated. If a VM
is capable of giving some of its memory, it can-
not demand it back immediately.

2. The benefits of performance of each additional
frame that is moved to/from a virtual machine
must be quantifiable in order to understand the
performance and cost correlation.

3. The scheduling overhead must be maintained
at a minimum; the cost of moving capacity ef-
ficiently must be measurable to overall VM im-
pact on performance.

Memory balancing among virtual machines is tra-
ditionally divided into two phases: (i) an estimator of
VM demands and (ii) a balancer that, through poli-
cies, will decide what actions to take based on the
information provided by the estimator. Ballooning
is a typical way of moving memory once the correct
amount is known. We focus on the first phase, in
which by knowing the working set size of each VM,
the hypervisor can dynamically reallocate an appro-
priate amount of memory to each guest [5].

III. Related Work

The active working set of an application refers
to the set of pages that it has referenced during
the recent working set window. Knowing the WSS
enables memory resources to be utilized more
efficiently. During recent years there have been
various studies on obtaining the memory demands
of virtual machines.



A. OS Exported Information

By monitoring a system’s swap and disk IO
activity, memory pressures can be inferred [5] [6],
with some accuracy, through black box monitoring
techniques. Alternatively, gray box strategies [6]
use information exported from the OS in the virtual
machine to estimate its memory behavior. For
example, the /proc filesystem on Unix guests can be
used [7] to easily obtain an accurate estimate. These
mechanisms have the advantage of being very simple
to implement, imply a low monitoring overhead and
are noninvasive to the host, VMM or guests - a
simple userspace daemon can monitor the needed
file(s). Despite these attractive benefits the major
problem is that there is no way of quantifying how
a virtual machine will react when its reallocating
memory, and therefore does not address problem 2
(previous section), thus making it only a reactive
measurement. For example, when a guest’s working
set size is small enough to give some of its memory,
there’s no way of knowing the correct amount
that would maintain its current level of service.
Furthermore, due to security reasons, like the lack of
trust between the hypervisor and a virtual machine,
it is better to let the VMM collect information
about VM memory usage and demands, instead of
the guests [8].

B. Statistical Sampling

VMWare implements a statistical sampling ap-
proach [3] at the hypervisor level to obtain VM
working set estimates without any guest involve-
ment. During a configurable window of time, or
sampling period, a random set of n pages, accessed
by the virtual machine, are monitored. Each time
a page in the monitored set is accessed, a counter
t is incremented. When the sampling period is
over, the memory that was actively used can be
computed from f = t/n, and therefore the page
usage by the VM will always be a fraction of the
total memory utilization. As with black-box and
gray-box techniques, mentioned above, statistical
sampling cannot induce growth or shrinkage of
WSS [4] [5] [9] when it is below its full allocation
capacities.

C. LRU Stack Distances

Perhaps the most studied alternative for ob-
taining memory demands of a VM is LRU stack
distances. Being a very common way of calculating
Miss Rate Curves (MRC), it has been applied
in many fields of computer science, including file
systems, compilers, caching systems and memory
management in virtual machines, among others.
We have conducted experiments to verify MRCs for
virtual machines and generated data that support
the referenced literature. The miss ratio curve plots
the page miss (page fault) ratio against varying
amounts of available memory and provides a better

correlation between memory allocation and system
performance [10]. This addresses problem 2 (from
the previous section) as we can quantify performance
vs cost. Figure 2 shows the resulting MRC for an
experiment running a Linux 3.0 kernel build on a
Linux guest VM. Apart from traditional system
daemons, no other program was being executed at
the time, so gcc was the main running process on
the system. In this case it can be seen that as more
pages are allocated, the miss rate decreases, which
is expected. Considering a standard 4 Kib page size,
when 50000 pages are used, there’s an acceptable
miss rate below 10% with around 195.3 Mib of
memory. From this point on, it is worth considering
not to allocate any more memory for the guest, as
most of its working set is already resident in memory.

Fig. 2. MRC for VM running a Linux 3.0 kernel compilation

In order to create an accurate MRC, enough pages
must be sampled to make it effective and capable
of describing the general behavior of the system,
and thus memory IO must be intercepted rather
frequently. When capturing pages at an OS level,
its important to notice that because of architecture
semantics, it is only possible to capture the ones
triggered by cache misses, as these are the ones the
OS has control over when a page walk begins. The
VMM, however, has more control over its guests
pages and memory accesses, specially with software
virtualized MMUs, and can revoke access permission
of pages, so the next accesses to those pages will
cause hidden page faults. This way, the page fault
handling mechanism can be extended to analyze the
faults and build the MRC, much like the statistical
sampling method. By modifying the hypervisor, the
guest OS kernels need not be altered and the whole
process is totally transparent. It is also crucially
important to keep the interception of memory access
with the lowest possible overhead (problem 3 in the
previous section), otherwise the trade off between
it and performance optimization might not be
worth it. Minimizing overhead sacrifices accuracy,
as less pages can be monitored, and vice versa.
Additionally, Zhou et al. [11] mention a concern



about the monitoring space overhead, since tracking
entire address spaces of processes can demand
large amounts of memory. In the case of virtual
machines, process address spaces within them are
irrelevant, as a VM is considered a single entity -
it could, however, incur in larger monitoring space
requirements if there are a large number of VMs
running.

Since most operating systems use an LRU based
page eviction policy, Mattson stack algorithm [12]
comes as a natural approach. A stack data type is
used to store accesses of pages. Since stacks are a
type of LIFO, the entries will be sorted with more
recently used pages on the top. Each time a page is
accessed, it is searched for through the list to obtain
its distance; so if the page is found in the ith element
of the stack, distance i is incremented, otherwise if it
is a first time reference, the distance ∞ is increased
instead. The next step adds the newly referenced
page to the top of the stack to represent it is the
newest access. The most computationally expensive
operation of the entire algorithm is searching for
pages in the stack, and a naive implementation will
sequentially iterate over the list with O(n) worst
case complexity - n being the amount of pages in the
stack. Although most programs have a good degree
of locality and access memory within a small range
of addresses, new references and access to old data
when dealing with large programs can de gradate
performance significantly [13]. For example, from
the experiment described previously, monitoring
frame accesses from a Linux kernel build on a virtual
machine, there were around 1.4 million references, of
those, 83% were only accessed once. Based on these
factors, it makes sense not to monitor all accessed
and only care about those pages that are under
demand by the workload.

Zhao et al. [4] implement MEB (MEmory Bal-
ancer), which instead of trapping all memory ac-
cesses, divide all pages into hot and cold sets, and
only monitor accesses to pages belonging to the cold
set. Initially all pages are marked cold and as they
are accessed they turn hot, since subsequent accesses
to hot pages aren’t monitored, they will not incur in
any overhead. In order to assure accuracy, the hot
page set must be limited to a certain size, and there-
fore when the amount of hot pages reach the limit,
the oldest reference is popped with FIFO semantics
and reintroduced into the cold set. Since stack data
types are used, this approach incurs in a linear over-
head as the amount of pages increase.
Pin et al. [8] introduce hypervisor exclusive caches
that also use LRU miss rate curves to obtain VM
working set sizes, in which guests are given a small
amount of memory, while the rest is managed in the
form of a cache. It traps all page evictions in a virtual
machine and maintains a stack to obtain the MRC,
and therefore it suffers from the same overhead issues
mentioned above. Furthermore, it requires modifica-

tions to the guest OS and therefore sacrifices flexi-
bility, and at the same time, by adding a new layer
of memory management, it comes as a complex al-
ternative for memory balancing.
By turning off presence bits in Intel hardware MMU
page tables (EPT), Min et al. [9] transparently mon-
itor guest memory accesses at the VMM level. Sim-
ilarly to MEB, instead of monitoring all pages, they
are divided into hot, warm and cold lists, where
only references to pages in the last two sets are
trapped. To calculate the stack distances efficiently,
a weighted red-black tree is used and logarithmic
complexity is much more attractive than iterating
linearly. This approach is very promising, reach-
ing similar cases to unmonitored cases, yet the stack
distance overhead still composes nearly 40% of the
entire overhead - including monitoring policies and
guest memory reallocation for all workloads. An-
other drawback is that it depends entirely on Intel
specific hardware extensions, and for workloads with
bad locality or that require many context switches,
is not the best choice when compared to shadow
pages. This problem is known as two dimensional
page walks that hardware memory management re-
quire for address translations.

IV. MRC Generation Framework for KVM

We have developed a testing framework that
extends KVM, the Linux Kernel Virtual Machine,
to transparently trap guest accesses to host physical
frames. Although any algorithm can be applied,
by default, it uses the naive implementation to
calculate stack distances and build miss rate curves.
Additionally, through tracing, entire VM mem-
ory accesses can be obtained for offline analysis.
Although offline analysis is beyond the scope of
this paper, it’s worth mentioning some useful
applications that can be potentially exploited in
the future. The first is studying the impact of
page replacement policies done by the host - in this
case, with KVM, it will always be Linux. Since the
policy will have a significant impact on the miss rate
(page fault) and therefore overall performance, it is
interesting to compare it to optimal algorithms [14],
which requires the entire reference trace. Another
application is to verify the correctness of online
generated miss rate curves. Since the same algo-
rithm(s) can be applied for both online and offline
mechanisms, we can verify that they match in
each case. Errors in estimating working set sizes
can produce catastrophic decisions in VM memory
balancing. Alternatively, virtual machine behavior
characterization can inferred by knowing its memory
access patterns, such as predicting locality [15],
swap IO distribution and memory latency. Similar
studies have been conducted on VMs analyzing disk
IO for characterizing workloads [16] [17]. Obviously,
when doing offline analysis, we do not care about
performance or overhead, and can use any algorithm
to monitor all memory accesses from the virtual
machine.



A. Framework Architecture

As shown in Figure 3, the framework traps mem-
ory accesses from guest virtual machines for both
shadow page tables and hardware nested pages by
turning off the presence bits in each. Since we inter-
cept them at both levels, no special configurations
are required depending on the virtual MMU mech-
anism used by the hypervisor. Once the physical
frame number is trapped, it is fed to the LRU al-
gorithm(s) that in turn calculate the stack distances
and can build MRCs at any point in time, through
sampling windows. Several LRU algorithms can co-
exist and be used simultaneously to generate similar
curves. This can be dynamically configured at run-
time through standard Linux kernel module sysfs
interfaces.

Fig. 3. KVM MRC Generation Framework Architecture

Additionally, at any point, tracing can be enabled
to report memory access traces for offline analysis.
We are currently working on a generic way of adding
policies to determine which pages to monitor, ap-
plying similar concepts of separating hot and cold
sets. This does not limit, however, comparing differ-
ent algorithms between each other, but we do expect
the overhead to gradually decrease since we currently
monitor all references.

B. Spacial Requirements

As described in section III, although the memory
footprint required to monitor VM page accesses is
not of a crucial factor, we do attempt to make it
as small as possible. Since the data structures will
depend on the algorithm we cannot provide a single
measurement for all cases, but the size Si for virtual
machine i currently monitoring n pages will naturally
depend on:

Si = n ∗ sizeof(structure) (1)

Furthermore, the entire memory T used by the
framework, monitoring m virtual machines, will be
given by:

T =

m∑
i=o

Si (2)

For example, we have implemented the naive
method for storing page accesses as a linked list, like
showed in Figure 4, which data structure uses 24
bytes per monitored frame. Running a single virtual
machine, with a kernel build, having accessed 130051
different frames, will cost a little over 3048Kb of over-
head on a x86-64 host architecture.

Fig. 4. Stack data structure - uses 24 bytes on x86

Linked lists are simple structures that, when ap-
plied as a stack, automatically have the notion of
access times. Other data types, such as trees and
hash tables, do not have this advantage, and there-
fore require extra fields in their structures to incor-
porate this notion. This will naturally increase the
monitoring space requirements.

C. Other Considerations

Since KVM, and therefore our framework, runs
in kernel space, access to global data will need syn-
chronization mechanisms. Locks can easily become a
performance bottleneck as the number of threads in-
creases, so we cannot take this matter lightly. While
simple counters can use atomic operations to incre-
ment and decrement, accessing data on the stack,
like pushing new references to the top and calculat-
ing stack distances, must be guarded more carefully.
We currently use spinlocks for this purpose, however,
we are considering using Read-Copy Update (RCU)
instead. This mechanism allows multiple readers and
writers to concurrently access data structures and
can therefore provide better performance for the im-
plemented algorithms, specially when incurring in
expensive stack distance calculations.

V. New Approaches to WSS Estimations in
VMs

It has been demonstrated that, until now, the best
way for estimating a virtual machine’s memory de-
mands are through LRU miss rate curves, mainly due
to the following reasons:

1. It provides information about a VM’s memory
demands with both growing and shrinking work-
ing set sizes.

2. It can quantify cost vs performance.
3. If applied to the hypervisor as a monitor it

is transparent to guest operating systems, and
therefore does not sacrifice flexibility.

4. It has proven [4] to be more accurate than sta-
tistical sampling.

There are, nonetheless, important drawbacks to
this approach. The first is determining a good policy
for estimating which pages to monitor. As we have
demonstrated, when tracking all memory accesses



it incurs in negligible accuracy, and therefore the
extra monitoring overhead can be spared. Secondly,
the data structures will play a paramount role when
computing the stack distance as linear complexity
does not scale and can significantly degrade overall
performance. Although optimizing stack distance
computation as been broadly studied [13] [18] [19]
in the past, very few alternatives have been applied
to virtual machine WSS estimation.

We plan on implementing popular algorithms such
as binomial trees, Bennett & Kruskal and hole based
trees as in our framework and directly compare them
with the results of the weighted red-black tree, de-
scribed in section III. We expect to see improve-
ments in performance and lower overhead in some
algorithms than what is currently available.

VI. Conclusions and Future Work

Today, virtualization technology is an important
player in computer science, providing multiple
benefits to the IT industry. In order to continue and
improve its acceptance, physical hardware resources
must be used be as efficiently as possible. One of
these areas is overcommiting memory so that more
VMs can be hosted on the same machine and make
better use of idle memory in the guests. Each virtual
machine should have only the amount of memory it
needs to provide a good QoS, this way memory can
be assigned or reclaimed from it as the hypervisor
sees fit. LRU miss rate curves are a good method
for computing virtual machine memory demands
as they provide information about how the VM’s
performance will impact when reallocating some of
its memory.

This paper analyzes, under a unified criteria, cur-
rent alternatives to estimating working set sizes in
virtual machines, focusing on LRU miss rate curves.
We also present a generic framework that serves as a
potential testbed for comparing different algorithms
and monitoring policies. Based on this framework,
our next step will focus on implementing more LRU
miss rate curve algorithms and formally benchmark
them with current implementations. With the infor-
mation that the WSS provides, informed decisions
can be taken regarding guest memory reallocation,
for example, by giving or reclaiming physical frames
through ballooning techniques. This will make
better use of the machine’s physical memory and
use it where it is needed, instead of underutilizing
it.
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