
OSR-Lite: Fast and Deadlock-Free NoC
Reconfiguration Framework

F. Triviño1, A. Strano3, J. Flich2, D. Bertozzi3, J.L. Sánchez1, and F.J. Alfaro1

Abstract—Current and future on-chip networks will
feature an enhanced degree of reconfigurability. On
one hand, NoCs must survive to component failures
occurring at runtime. On the other hand, power
management strategies and virtualization support at
network level will increasingly result into the need
of planned and temporary disconnection of network
components. This paper is inspired by the overlapped
static reconfiguration (OSR) protocol developed for
off-chip networks. However, in its native form its im-
plementation in NoCs is out-of-reach. Therefore, we
provide a careful engineering of the NoC switch ar-
chitecture and of the system-level infrastructure to
support a complete and transparent reconfiguration
process. Performance during the reconfiguration pro-
cess is not affected and implementation costs (critical
path and area overhead) are proved to be fully afford-
able for a constrained system. Less than 250 cycles are
needed for the reconfiguration process of an 8x8 2D
mesh with marginal impact on system performance.

Keywords— NoC, Virtualization, Fault-Tolerant,
Reconfiguration.

I. Introduction

AS complexity keeps increasing, there emerge
new requirements that affect how the Networks-

on-Chip (NoC) is designed. New challenges arise
like providing support for an ever increasing prob-
ability of manufacturing defects. Indeed, reliabil-
ity is one of the most critical emerging challenges.
Nanoscale fabrication processes inevitably result in
defective components, which lead to permanent er-
rors. Wearout components also impact the system
configuration rendering the network affected.

Besides reliability concerns, there is also an inter-
est in providing further functionality to the system.
Virtualizing the entire chip into sets of virtual regions
and assigning them to different applications running
concurrently is appealing in those systems. Simi-
larly, powering down unused resources during most
of the time is becoming compulsory to keep power
consumption levels to reasonable bounds.

To address these new functionalities, the NoC
must be enriched with an efficient reconfiguration
process which enables the smooth and transparent
transition between configurations. For instance, Fig-
ure 1 shows two different configurations of a chip
multiprocessor (CMP) system where in the first
configuration (conf. A) different applications are
mapped, some components are failed, and some re-
sources are powered down. Suddenly, the chip needs
to be reconfigured in order to allocate a new appli-
cation and to power on new resources (conf. B).

In this paper we address this issue, providing an ef-
ficient reconfiguration mechanism to NoC-based sys-
tems. The Overlapping Static Reconfiguration pro-

1Univ. de Castilla-la Mancha, e-mails: {ftrivino,
falfaro, jsanchez}@dsi.uclm.es.

2Univ. Politecnica de Valencia, email:
jflich@disca.upv.es.

3Univ. Ferrara, e-mail: {strlsn1, brtdvd}@unife.it

(a) Configuration A (b) Configuration B

Fig. 1. Two NoC configurations where the routing algorithm
needs to be adapted.

cess (OSR) in [1] enables a transparent reconfigura-
tion process. However, in [1] only the protocol was
described while at the same time highlighting the
key architectural requirements to properly support
it (namely virtual channels, routing tables, event no-
tification, involvement of end-nodes in the reconfig-
uration process). No practical implementation in-
sights were provided therefore the applicability of
OSR to an on-chip setting is highly questionable. In
this paper we report on the first-time implementation
of the native OSR protocol in an on-chip network,
proving that the needed network over-provisioning
is such to make the protocol not viable in practice.
As a consequence, the paper targets the modifica-
tion of OSR to better match the requirements of a
resource-constrained NoC setting, thus resulting into
the OSR-Lite framework. Such modifications con-
cerns both some protocol details (without giving up
the goodness of the underlying idea) and relevant
implementation techniques.

In particular, we provide a complete framework
where the entire reconfiguration process is sup-
ported, starting from notification of an event inside
the network (we develop a control network), the com-
putation of the proper routing algorithm for the new
configuration, notification of the new configuration
(through the control network), and support for the
OSR-Lite reconfiguration process.

With OSR-Lite in place, the system is able to re-
configure in a very short period of time, enabling the
entire and transparent transition between any pair
of independent and unrelated configurations. More-
over, this is achieved with no impact on network la-
tency and with no impact on switch delay.

The rest of the paper is organized as follows. Sec-
tion II describes the related work. Then, in Sec-
tion III the OSR technique is briefly described. Sec-
tion IV focuses on the OSR-Lite proposal, whereas
Section V deals with implementation issues. Then,
Sections VI and VII deal with high-level results and
synthesis results, respectively. Finally, the paper is
concluded in Section VIII.

II. Previous Work

In the context of networks on chip, new techniques
have been proposed tackling the problem of resilient
routing. The Vicis NoC architecture [2] uses the
turn routing model during fault-free operation, and
a heuristic solution that makes exceptions to that
routing model to maximize connectivity. Reconfigu-
ration process rewrites the routing tables based on
the information from built-in-self-test units in each
router. When large number of faults occur, excep-
tions sometimes result in deadlocked routing paths.
A reconfigurable fault-tolerant deflection routing

algorithm based on reinforcement learning for NoC
has been proposed in [3]. The algorithm reconfig-
ures the routing tables through reinforcement learn-
ing based on 2-hop fault information. In [4], a re-
configurable routing algorithm for a 2D-mesh NoC
is presented. This algorithm introduces low hard-
ware cost but can only be used in one faulty router
or regular region topology.
Finally, [5] presented Ariadne, an agnostic recon-

figuration algorithm for NoCs. Ariadne is imple-
mented in a fully distributed mode. Thus it re-
sults in very simple hardware and low complexity
although it comes with suboptimal solutions for lack
of global view. The up*/down* routing will not
perform optimally under certain configurations, spe-
cially in the absence of failures (in a 2D mesh). In
addition, up*/down* routing is encoded in routing
tables at switches. Unfortunately, the Ariadne la-
tency badly scales with network size (the configura-
tion latency increases with the square of the nodes
number). This latter property has a severe impact
on the network performance especially because Ari-
adne does not guarantee a transparent transition be-
tween configurations. The flits have to freeze in the
network pipelines and the throughput drops to zero
during reconfiguration. Even when the communica-
tion resumes, a high contention due to the fullness of
injection queues strongly degraded the network per-
formance for a long period.
As opposed to these solutions, OSR-Lite does not

use routing tables at switches, allows coding any ef-
ficient routing algorithm (even DOR routing) and
requires lightweight switch support to enable truly
fast dynamic reconfiguration. Moreover its latency
smoothly increases with network size, and the con-
figuration transition is transparent, ultimately pre-
serving the throughput of the system.

III. Native OSR technique

Two routing algorithms Rnew and Rold
1 are

deadlock-free when they have an acyclic channel de-
pendency graph. However, when using both algo-
rithms at the same time new extra dependencies are
induced potentially leading to deadlock. If old pack-
ets are guaranteed to never go behind new packets
the extra dependencies do not occur in practice and

1We refer to Rold as the old routing function and Rnew as
the new routing function. Similarly, packets routed with Rold

will be referred to as old packets and packets routed withRnew

will be referred to as new packets.

(a) (b)

Fig. 2. Token advance in a network: (a) check for absence
of old messages and input ports epoch, (b) token signal
propagation. The token separates old traffic from new
traffic.

then no deadlock can be formed. Indeed, in a tradi-
tional static reconfiguration (STR) process the entire
network is drained thus guaranteeing old packets will
never go behind new ones.
OSR is a static reconfiguration process but local-

ized at link/router level, and not at network level.
Indeed, it guarantees that new packets are only for-
warded via links that have been drained from old
packets. This is achieved by triggering a token that
separates old packets from new packets. The token
is triggered by all the end nodes and tokens advance
through the network hop by hop. In contrast with
static reconfiguration, the new packets can enter the
network at routers where the token already passed.
Figure 2 shows how tokens advance in a network.

At a given output port, a token is triggered to the
next downstream router indicating the output port
has been drained from old packets. This is guaran-
teed when the token has been received through all
the input ports of the switch that have old (Rold)
output dependencies with the output port. These
port dependencies can be extracted from the Rold

routing algorithm. However, how to perform this is
not explained in [1], although it is key to obtaining
an efficient implementation.

IV. OSR-Lite

The OSR mechanism needs to be modified in or-
der to better suit the NoC environment so to become
an efficient and plausible mechanism for planned re-
configurations. Indeed, the main issues addressed in
this paper are the following:
Codification of the routing information. In OSR,

routing tables were used to store the routing info for
both routing algorithms (Rnew and Rold). In NoCs,
however, routing tables are an expensive resource in
terms of access time, area, and power consumption.
Therefore, hosting two routing tables per switch in-
put port does not appear to be a cost-effective solu-
tion for OSR-Lite.
Control virtual channel (VC) used in OSR. Unfor-

tunately, using VCs only for that purpose has a large
impact on router implementation (will be seen later)
and is not fully justified in an on-chip.
Reliable control VC assumed in OSR. A different

algorithm is assumed in OSR to effectively route con-
trol packets through the control VC.

Fig. 3. Reconfiguration steps performed with OSR-Lite.

Involvement of end nodes in the reconfiguration
process. In NoCs, reaching the end nodes via ded-
icated packets from the central manager would be
a time-consuming course of action. In order to cut
down on the reconfiguration latency, involving only
switches and not endnodes in the reconfiguration
would be an appealing property in a NoC setting.

In order to address all these issues, we propose the
OSR-Lite approach. Figure 3 shows all the steps and
the main modifications performed. In particular, we
exploit a control network through which routers can
inform about expected topology changes. The con-
trol network collects all the notification events and
sends them to a central manager (step 1). If the re-
configuration is instead initiated by a resource man-
ager in the context of power management or virtual-
ization strategies, step 1 can be skipped. The central
manager then computes the new configuration (step
2) and disseminates the new routing information to
the switches (step 3). Then, every switch starts the
OSR-Lite reconfiguration process in step 4. Notice
that end nodes are not involved in the reconfigura-
tion process.

Given that the control network and the computa-
tion algorithm are covered by previous work [6], from
now on we focus on the core reconfiguration process
of the network and on the microarchitectural sup-
port. The reader should keep in mind that all these
mechanisms will work together in the complete re-
configuration framework. In the next section we de-
scribe the router implementation in more detail.

V. OSR-Lite implementation

Without lack of generality, we use the xpipesLite
switch architecture [7] to prove viability of our OSR-
Lite mechanism. The switch implements both input
and output buffering and relies on wormhole switch-
ing. The crossing latency is 1 cycle in the link and
1 cycle in the switch itself. The switch relies on a
stall/go flow control protocol. We assume the follow-
ing parameter values in the architecture: 32 bit flit
width, 6 flit output buffers and 2 flit input buffers.
To note that different flit width and input/output
buffer depth could be assumed while preserving the
OSR-Lite mechanism implementation.

The switch architecture is extremely modular. A
port-arbiter, a crossbar multiplexer and an output
buffer are instantiated for each output port, while
a routing module is cascaded to the buffer stage
of each input port. We implement logic-based dis-

tributed routing (LBDR) [8]: instead of relying on
routing tables, each switch has simple combinational
logic that computes target output ports from packet
destinations. The support for different routing algo-
rithms and topology shapes is achieved by means of
18 configuration bits for the routing mechanism of
the switch (hereafter denoted as LBDR bits). See
[8] for more details. Such bits make LBDR a flexible
routing mechanism while at the same time signifi-
cantly cutting down on the memory requirements of
routing tables. LBDR bits are computed by a central
NoC manager and disseminated to the switch input
ports through the dual control network. Indeed, two
sets of LBDR bits are allocated at each router for
OSR-Lite. Upon receiving the new routing bits, a
router triggers the reconfiguration process by auto-
generating initial tokens at its local input port (port
connected to an end node) and processing the tokens.

A. OSR-Lite at the Input Ports

As a first step, the baseline switch was enhanced
with a second routing logic unit (LBDR1) collecting
the new routing info coming from the central man-
ager. This unit is connected to the input buffer as the
baseline LBDR0 block (see Figure 4.(a)) although is
used exclusively for routing packets in the new epoch
(new packets). The switch arbiters need to select the
routing info from the appropriate routing logic block
(either LBDR0 or LBDR1). This is obtained from a
multiplexer configured by the current epoch of the in-
put port (in a flip-flop). In order to reduce the recon-
figuration latency, the input port evolves to the new
epoch as soon as there are no stored header flits at
the input port with the epoch bit set to zero (Epoch 0
headers signal) and the token has been received from
the upstream switch (upstream epoch signal). Notice
that in the case of the ports connected to end node
(local port; local port flag), the token is assumed to
arrive with the arrival of the new configuration bits
(LBDR1 flag). In this case, the header flits located in
the buffers are considered of the new epoch when the
new configuration bits have arrived and the routing
mechanism (LBDR1) is set.
The number of flit headers to be routed by LBDR0

and stored in the buffer is detected by a 2 bits counter
monitoring the incoming and outgoing headers of the
input buffer module. The counter increases its value
when a header is accepted and the incoming token is
low and decreases its value when a header is sent. In
order to preserve the max performance of the base-
line switch, sequential logic stages were exploited to
avoid impacting the critical path in the OSR-Lite
mechanism.

B. OSR-Lite at the Arbiters

OSR-Lite requires a lightweight new module
plugged around the baseline arbiters. The logic is re-
ported in Figure 4.(b). Basically, a set of AND/OR
logic blocks together with a set of EXOR blocks al-
low the arbiter to process an incoming header exclu-
sively when the epoch of the switch input port is the
same as the one of the destination output port. On

Fig. 4. (a) Switch input buffer enhanced with the OSR-Lite logic and a new set of routing mechanism, (b) switch arbiter
enhanced with the OSR-Lite logic, and (c) switch output buffer enhanced with the OSR-Lite logic.

the contrary, a packet residing in an input port with
the new epoch is stalled until the output port evolves
to the new epoch (guaranteeing old packets go first
and then new packets).

C. OSR-Lite at the Output Ports

An output port evolves to the new epoch when
all the input ports with output dependencies to this
output port have evolved to the new epoch. In order
to efficiently deal with the dependencies, OSR-Lite
takes profit of the routing bits used in LBDR. Rout-
ing bits indicate the routing restrictions that exist
at neighboring switches. Therefore, they can be seen
also as channel dependencies. If the Rxy bit is set
it means that there is a link dependency between
the output port x and the output port y at the next
switch. On the contrary, if the bit is reset it means
there is no dependency and in that case we can safely
assume no packets will come through the port x re-
questing output port y.
Therefore, the output port needs to receive both

the epochs of the input ports and the routing re-
strictions located at the neighboring switches. The
mechanism is enabled by a set of OR blocks (each
of them belonging to a different input port) followed
by an AND block, as represented in Figure 4.(c).
In contrast with the baseline OSR technique

(where the routing restriction information was saved
in the routing table), the OSR-Lite mechanism needs
to obtain channel dependencies from the routing
logic located at neighbor switches. As a result, three
additional routing bits are sent by the LBDR0 logic
of the upstream switch together with the token bit.
To note that LBDR0 received its routing bits infor-
mation through the control network in an earlier con-
figuration stage. In addition, the input port needs
to send the incoming routing restriction signals to
the appropriate output ports. Thus every link is ex-
tended by 4 additional wires (i.e. 1 token wire + 3
routing restriction wires). See Figure 5.
Finally, the token is sent by the output port to

the downstream switch when all the input ports with
dependencies with the output port have evolved to
the new epoch, meaning all these input ports have
drained all the old packets from their buffers (see the
LocalEpoch signal in Figure 4.(c)).
Once the network has completely migrated to

Epoch 1, the central manager can safely fill LBDR0

Fig. 5. Configuration information from neighbor switches and
control network

bits with a copy of LBDR1 bits, and instruct all the
switches to safely swap to Epoch 0 again. This al-
lows for the system to be ready in few cycles for a
new reconfiguration process.

VI. System-Level Evaluation

A. Propagation

In order to simulate the reconfiguration process,
we have modeled the OSR-Lite scheme in our event-
driven cycle-accurate network simulator. A 8 × 8
mesh is used with wormhole switching. Flit size is
set to 4 byte and messages are 5-flit long. For the
transient state, 50K messages are assumed before re-
sults are collected.

Figure 6 shows how OSR-Lite tokens propagate
over a mesh when there is no traffic traveling through
the network. The diagonal arrows represent the bidi-
rectional restrictions imposed by the routing algo-
rithm (Segment-Based routing [9]). In this figure,
the numbers inside the switches represent the cycle
when the token signal is propagated to its neigh-
bors. Moreover, the arrows among switches depict
the direction of the token signal propagations. As we
can see, the token signals propagate among switches
throughout the network in the order of the routing
channel dependency graph, where Figure 6.(a) fol-
lows a scrolling up zig-zag direction, and Figure 6.(b)
follows a scrolling down zig-zag direction.

As we can see, it is a very fast process as the pro-
tocol uses only 47 cycles when a 4×4 mesh is consid-
ered. The high speed of the OSR-Lite reconfigura-
tion process allows to perform frequent planned re-
configurations without affecting the integrity of the
system operations. However, when there are mes-
sages traveling through the network the switches
must drain the input queues of old messages before
propagating the token signal as explained in Section
III. This fact delays the OSR-Lite propagation de-

(a) (b)

Fig. 6. OSR-Lite propagation over a 4×4 2D mesh topology:
(a) scrolling up, and (b) scrolling down.

pending on the network load. In the following, we
analyze this effect taking into account different in-
jection rates.

B. Time Overhead

We have performed different simulations varying
the injection rate. For each rate, we assume a con-
stant packet generation rate for all end nodes. Figure
7.(a) shows the performance obtained in a 8 × 8 2D
mesh network under uniform traffic when no recon-
figuration process is triggered. The figure indicates
the three network injection rates that are used in the
simulations (Low, Medium, and High).
Figure 7.(b) shows the number of cycles involved

in the propagation of the OSR-Lite process taking
into account the three different injection rates. Each
bar depicts the mean of 30 simulations varying the
seed. Moreover, we show the error bars that rep-
resent the 95% confidence interval. As we can see,
the propagation time does not exceed 242 cycles for
the High injection rate. Moreover, the difference be-
tween both the minimum and the maximum network
loads is only 14 cycles, and therefore, the network
traffic condition has a minimal effect on the OSR-
Lite token propagation.

C. Comparison

In this section we compare the OSR-Lite proto-
col and the traditional static reconfiguration process
(TSR). Figures 8.(a), 8.(b), and 8.(c) represent the
average network latency respectively under hotspot
traffic and uniform traffic with Medium and High in-
jection rates, where both reconfiguration processes
(OSR-Lite and TSR) are invoked after 150K cy-
cles. Moreover, we have plotted two additional lines:
the average message latency for the full mesh (Full-
Mesh), and the average message latency for the mesh
which has one link disabled from the beginning of the
simulation (1-Fail-Mesh). Notice the y-axis is in log-
arithmic scale. Moreover, we have selected a random
link in the 8×8 mesh as faulty. Under hotspot traffic
pattern, 5 nodes are randomly chosen as hot spots
which receive an extra proportion of traffic (30%) in
addition to the regular uniform traffic.
The first observation is that both Full-Mesh and

1-Fail-Mesh obtain a different message latency. This
is normal because the 1-Fail-Mesh suffers a latency
degradation due to the disabled link. On the other
hand, the two reconfiguration processes (OSR-Lite
and TSR) start at the same time at the 150K cycle.
At this point, the reconfiguration process moves from

 0

 20

 40

 60

 80

 100

 0 0.25 0.50 0.75

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycles/switch)

Low Medium
High

(a) (b)

Fig. 7. (a) Average message latency at different injection rates
for SR routing on 8×8 2D mesh (b) OSR-Lite propagation
over a 8× 8 2D mesh at different injection rates.

the Full-Mesh to the 1-Fail-Mesh topology. This ef-
fect can be estimated by the figures as the latency
evolves from the latency obtained for the Full-Mesh
to the latency obtained for the 1-Fail-Mesh. How-
ever, an important result based on the figures is
that OSR-Lite performs the reconfiguration without
degrading the obtained performance. In this case,
the obtained latency grows up to the 1-Fail-Mesh
line. Therefore, the latency is always near the maxi-
mum obtained with the 1-Fail-Mesh topology. In the
TSR case, on the contrary, the latency is degraded
due to the reconfiguration process overhead (need to
drain the network). In the three cases, the latency
grows above the 1-Fail-Mesh latency until it stabi-
lizes. Specifically, in the Figure 8.(c) the latency of
the TSR line grows to more than 500 cycles, and then
stabilizes after 350K cycles. In this period of time,
the TSR reconfiguration is degrading the obtained
latency more than the link failure degradation pro-
duces. On the other hand, the OSR-Lite latency is
upper bounded by the 1-Fail-Mesh latency.

VII. Synthesis results

A. Area Comparison

The description of the OSR mechanism in [1] fo-
cuses on the protocol details and it lacks of practical
implementation details. Thus we exploited the in-
formation provided in [1] to model the OSR mecha-
nism at RTL level and evaluate this latter solution in
an on-chip constrained system. Especially, the OSR
mechanism relies on 1 data VC supported by an ad-
ditional control VC, and it adopts routing tables. As
a result, we implemented the OSR mechanism into
a 5x5 switch augmented with VCs by following the
design techniques for area efficiency in [10] and we
enhanced the switch with the 40nm memory macros
to model the routing tables.
The 8 × 8 mesh topology of Section VI was con-

sidered. Thus, 64 end-nodes are the total number of
destinations in the system. When routing tables are
used for distributed routing, each switch input port
has a memory module with a number of words equal
to the amount of destinations. Every word is com-
posed of 3 bits, matching the switch radix. Given a
destination ID, the switch selects the target output
port based on look-up table. The minimum word
width that the memory compiler, at the 40nm tech-
nology node, can generate is 4 bits. As a result,
above all the available memory cuts, a single-port

 10

 20

 40

 100

 500

150K 250K 350KA
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

, l
og

 s
ca

le
)

Time (cycles)

Full-Mesh
1-Fail-Mesh

TSR
OSR-Lite

 10

 20

 40

 100

150K 250K 350KA
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

, l
og

 s
ca

le
)

Time (cycles)

Full-Mesh
1-Fail-Mesh

TSR
OSR-Lite

 10

 20

 40

 100

 500

150K 250K 350KA
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

, l
og

 s
ca

le
)

Time (cycles)

Full-Mesh
1-Fail-Mesh

TSR
OSR-Lite

(a) (b) (c)
Fig. 8. Average message latency with (a) hotspot traffic and uniform traffic ((b) medium load and (c) high load).

low-power RAM with 64 words of 4 bits was the
memory cut showing the lowest routing delay and
area footprint.

Finally, Figure 9.(a) shows the area footprint of
this latter solution (the OSR SW) with respect to
a baseline switch and our proposed solution (OSR-
LITE SW). In particular, the OSR-Lite area over-
head takes into account also the contribution of the
control network carrying the information from the
global manger to the routing mechanisms. For this
purpose, we exploited the fault-tolerant control net-
work proposed in [6].

The OSR-Lite reconfiguration mechanism requires
a 14% of area overhead with respect to the baseline
switch. This result is mainly due to the additional
LBDR routing mechanism (+12%) contribute. On
the other hand, the area overhead of the remaining
reconfiguration logic (detailed in Section V) is negli-
gible when integrated into the switch.

Interestingly the OSR-Lite switch outperforms the
baseline OSR switch: this latter requires approxi-
mately two times larger area than the counterpart
solution. This result is mainly due to the severe area
penalty introduced by the VCs and the 65% area sav-
ing achieved by the LBDR mechanism with respect
to the routing table.

As a last consideration, the routing mechanism of
the OSR-Lite solution scales with network size. In
fact, while the memory macro suffers from increasing
area and delay penalties, the logic complexity of the
distributed routing algorithms does not depend on
the number of destinations, hence it stays constant.
Indeed, the distributed routing algorithms just grow
with the switch radix.

B. Routing Delay Comparison

In order to evaluate the effects of the OSR-Lite
mechanism on the switch routing delay, we per-
formed the 5x5 switch synthesis for maximum per-
formance. The same experiment was repeated for
both the baseline switch and the switch augmented
with the baseline OSR mechanism. The OSR-LITE
switch and the baseline switch achieved a similar
maximum operating speed of 750 MHz. As described
in Section V, the reconfiguration scheme was de-
signed to avoid long critical path and preserve the
baseline switch performance. Our OSR-Lite-enabled
switch is thus capable of an at-speed reconfiguration.

On the other hand, the OSR switch is the 35%
slower than our proposed solution as showed by Fig-
ure 9.(b). This result is mainly due to the intrinsic

Fig. 9. 5x5 switch area and routing delay comparison.

complexity added by the VC logic and the delay re-
quired to access the 64 words RAM routing tables.

VIII. Conclusion

In this paper we have proposed the implementa-
tion of a fast and transparent reconfiguration mech-
anism in NoCs. The native OSR reconfiguration
mechanism has been proven to be unsuitable for
this purpose although proposing an interesting in-
tuition. Therefore, in this paper we have engineered
the proper protocol and implementation modifica-
tions to fit reasonable area budgets, with no impact
on performance while retaining the same underlying
principle for fast reconfiguration. The final mech-
anism, OSR-Lite, is able to support a transparent
NoC reconfiguration with as little as less than 250
cycles.

Acknowledgment

This work was supported by the Spanish MEC and
MICINN, as well as European Comission FEDER
funds, under Grants CSD2006-00046 and TIN2009-
14475-C04. It was also partly supported by JCCM
under Grant POII10-0289-3724 and by the project
NaNoC (project label 248972).

Referencias

[1] O. Lysne, et al., “An efficient and deadlock-free network
reconfiguration protocol,” TC, 2008.

[2] D. Fick, et al., “Vicis: A reliable network for unreliable
silicon,” in DAC, 2009.

[3] C. Feng, et al., “A reconfigurable fault-tolerant deflec-
tion routing algorithm based on reinforcement learning for
Network-on-Chip,” in NocArc), 2010.

[4] Z. Zhang, et al., “A reconfigurable routing algorithm for a
fault-tolerant 2D-mesh Network-on-Chip,” in DAC, 2008.

[5] K. Aisopos, et al., “Ariadne: Agnostic reconfiguration in
a disconnected network environment,” in PACT, 2011.

[6] A. Ghiribaldi, et al., “A complete self-testing and self-
configuring noc infrastructure for cost-effective mpsocs,”
TECS, 2011.

[7] S. Stergiou, et al., “Xpipes lite: a synthesis oriented design
library for networks on chips,” in DAC, 2005.

[8] S. Rodrigo, et al., “Addressing manufacturing challenges
with cost-efficient fault tolerant routing,” in NOCS, 2010.

[9] A. Mejia, et al., “On the potentials of segment-based rout-
ing for nocs,” in ICPP, 2008.

[10] F. Gilabert, et al., “Improved utilization of noc channel
bandwidth by switch replication for cost-effective multi-
processor systems-on-chip,” in NOCS, 2010.

