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Abstract— Chip Multiprocessor Systems (CMPs)
rely on a cache coherency protocol to maintain mem-
ory access coherence between cached data and main
memory. The Hammer coherency protocol is appeal-
ing as it eliminates most of the space overhead when
compared to a directory protocol. However, it gener-
ates much more traffic, thus stressing the NoC and
having worse performance in terms of power con-
sumption. When using a NoC with built-in broad-
cast support network utilization is lowered but does
not solve completely the problem as acknowledgment
messages are still sent from each core to the memory
access requestor. In this paper we propose a small
and simple control network that collects the acknowl-
edgement messages and delivers them with a bounded
and fixed latency, thus relieving the NoC from a large
amount of messages. Experimental results demon-
strate on a 16-tile system with the control network
that execution time improves up to 17%, with an av-
erage improvement of about 7.5%.
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I. Introduction and Motivation

Many-core chip multiprocessors (CMPs) integrate
tens or even hundreds of processor cores onto the
same die [1], [2]. In such systems, all the processor
cores and other components (memory components,
accelerators, memory controllers) are interconnected
using a high-speed on-chip network (NoC) [3]. If cur-
rent trends continue, future CMPs will implement
the hardware-managed, implicitly-addressed, coher-
ent caches memory model [4]. With this memory
model, all on-chip storage is used for private and
shared caches that are kept coherent in hardware
using a cache coherence protocol. Communication
between threads is achieved through shared mem-
ory. On the other hand, future many-core CMPs will
probably be designed as arrays of identical or close-
to-identical building blocks (tiles) connected over an
on-chip switched direct network [2]. These design
has been claimed to provide a scalable solution for
managing the design complexity, effectively using the
resources available in advanced VLSI technologies.
Figure 1 illustrates the tile-based CMP that we as-
sume for developing our proposal. More specifically,
we show the case of a CMP system with 16 tiles, in
which every tile has a core, private L1 caches and a
slice of a shared but distributed L2 cache.
Directory-based cache coherence protocols have

been typically employed in systems with switched
direct networks, as tiled CMPs are. The directory
structure is distributed between the L2 cache banks.
In this way, each tile keeps the sharing information of
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Fig. 1. Tile-based CMP system.

the blocks mapped to its L2 bank. This information
includes the state of each cache line and its sharing
code, that holds the list of current sharers. Most of
the bits of each directory entry are devoted to codify
the sharing code, and therefore the total size of the
directory structure is mainly determined by it. This
extra storage adds requirements of area and energy
consumption to the final design and could restrict
the scalability of future many-core CMPs

Among the organizations for the sharing code ap-
peared a long time [5], two deserve special attention.
On the one hand, a bit-vector (one bit per private
cache) could be used to have an exact representa-
tion of the sharers in each moment. On the other
hand, Dir0B does not dedicate any bits to the shar-
ing code, requiring a broadcast on all coherence op-
erations and giving rise to broadcast-based directory
protocols. The Hammer protocol employed in sys-
tems built using AMD Opteron processors [6] is the
most representative example of the latter 1.

Figure 2 and 3 show the basic NoC-level actions
performed in both protocol implementations when
dealing with a L1 write miss. In the broadcast-based
protocol, the corresponding L2 bank is notified which
triggers a broadcast operation. To complete the op-
eration, all the nodes need to notify the requestor
with an ACK message (after invalidating their copy).
In a bit-vector directory protocol, however, only the
node who owns the block is notified (or the sharers,
if they exist).

Fig. 2. L1 cache write miss with hammer protocol.

Summarizing, bit-vector directory protocols do
not scale since the size of the directory grows linearly
with the number of cores. However, these protocols

1We use the terms “broadcast-based directory protocol” and
“Hammer protocol” interchangeably along this work.



Fig. 3. L1 cache write miss with directory protocol.

generate the minimum amount of network traffic.
On the other hand, broadcast-based protocols com-
pletely remove the sharing code resulting in a com-
pletely scalable directory structure, but the number
of messages on coherence events increases linearly
with the number of cores, which limits its applicabil-
ity to systems with a small number of cores.

In an isolated design environment, where the NoC
and the coherence protocol are designed separately,
many optimization opportunities are lost. If, how-
ever, the NoC is co-designed with upper layers, the
overall system can be optimized. In particular, the
NoC can be designed to efficiently deal with the oper-
ations of a broadcast-based directory protocol. This
is the approach followed in this work.

Figure 4 shows a classification of the messages that
travel on the NoC of our simulated system when
running nine different SPLASH-2 applications un-
der the Hammer coherency protocol (simulation de-
tails are provided in the evaluation section). Net-
work messages are divided in four categories: Re-
quests includes all the requests sent by L1 to L2
caches; Responses includes all data messages sent to
the requestor and writeback acknowledgements sent
by the L2 back to the L1s; Coherence reqs includes
the coherence requests (invalidations and cache-to-
cache transfer commands) sent from the home L2
bank to all the L1s; and Coherence res includes all
the acknowledgements from the L1 caches back to the
L1 requestor. As it can be derived from the figure,
60% on average of the total traffic is due to coherence
requests and their associated acknowledgements. It
is also important to note that this amount reaches
almost 90% for some applications (Barnes, FFT and
Water-nsquared).

Fig. 4. Breakdown of NoC messages when using the Hammer
protocol for different SPLASH-2 applications.

One well-known strategy to reduce the traffic gen-
erated by coherence requests is to use a NoC with
multicast or broadcast support. With this kind of
support, on every coherence event the home direc-
tory would inject a single multicast message instead

of multiple serialized messages (one per destination).
Obviously, this would save a very significant fraction
of the coherence requests. However, broadcast-based
directory protocols cannot take full advantage of a
NoC with multicast or broadcast support due to the
fact that the acknowledgment messages (Coherence
res) are still there and would penalize performance
in a noticeable way (note from Figure 4 that these
messages represent more than 40% of the total traffic
in several cases). In this way, dealing with these ac-
knowledgement messages in the Hammer protocol is
still an open issue. In this work we tackle such chal-
lenge and take an heterogeneous design approach of
the NoC in order to speedup the Hammer protocol.
In particular, we design a fast and simple gather con-
trol network (GCN) associated with the NoC that
collects all the acknowledgement messages of the L1
caches. The main NoC is still used to transport re-
quests, responses (including messages with data) and
coherence requests. However, all the acknowledge-
ment messaging associated with coherence requests is
separated from the NoC and sent through the gather
network. With this design, the hammer protocol per-
formance is boosted and pairs and even improves the
performance of a typical directory-based protocol 2.
In particular, execution time of applications is re-
duced on average by 7.5% whereas messages in the
network are reduced by 60%.

The rest of the paper is organized as follows. In
Section II we describe the proposed NoC with the
gather control network in place. Then, in Section III
we provide performance and NoC results for different
coherence protocols. Then, Section IV describes the
related work, and finally, Section V concludes the
paper.

II. Heterogenenous NoC design with
Gather Control Network

A. Overall NoC Design

The complete NoC switch design is shown in Fig-
ure 5. The network is made of 4-stage pipelined
switches with the typical stages: IB (input buffer),
RT (routing), VA/SA (virtual channel and switch al-
location) and XT (crossbar transversal). Each switch
is connected to its neighbors through each dimension
and direction and to the local nodes. Up to three
nodes are located on each tile (the L1 cache, the L2
bank, and possibly a memory controller).

Fig. 5. Switch design.

2In [7] we have also implemented a similar approach for
directory-based protocols.



Each input port has five virtual channels. Each
virtual channel has its own input buffer, which can
store up to four flits. A Stop&Go flow control regu-
lates the advance of flits between adjacent switches.

B. Gather Control Network

An additional control logic and wiring is added to
to this typical NoC switch desig, building the gather
control network (GCN). A GCN consists of 16 single-
wire subnetworks (one per node) made of AND gates,
where 15 nodes are located at the leaves of the tree
and the other node is at the root of the tree. The
GCN serves as an ACK of all the nodes.
Figure 6 shows the number of wires of the gather

control signals between switches. Each switch han-
dles both input and output control signals through
all its ports. For a N ×N mesh NoC, the number of
outgoing control signals through all the output ports
is N − 1, in our case 15. Each control signal is a
different one-bit subnetwork addressed to a different
destination (N − 1 destinations).

Fig. 6. Control signals distribution for the gather network.
YX layout.

Figure 7 shows the layout for the subnetwork ded-
icated to node 1. ACK messages will be collected
through Y columns and then collected through the
first row. At each switch control signals are grouped
with AND gates. In particular, at each switch the
incoming control signals and the control signal from
the local cores are ANDed. Since there is at least
one core connected to each switch, an AND gate is
needed at each switch for the control network ad-
dressed to node 1, except for the last row of switches.

Fig. 7. YX layout for gather control network for end node 1.

Each GCN logic at each switch is connected to its

neighbors control logic blocks with dedicated wires.
Figure 8 shows the logic at each switch for the gather
control network. The goal of the logic block is simply
to AND the corresponding input signals and to dis-
tribute the results through the corresponding output
ports, depending on the location of the switch in the
mesh topology and the selected layout.

Fig. 8. General GCN block at switches.

The logic receives as input 15 control signals from
the local core, each addressed to a different destina-
tion node. XL means a control signal coming from
the local port and addressed to destination X. Thus,
we have from 0L up to 15L signals (excluding the
one for the local core). In addition, we have up to
20 control signals coming from either north (N) or
south (S) input ports and up to 5 control signals
from either east (E) or west (W ) input ports. These
signals are distributed (based on the location of the
switch in the mesh) and assigned to the correspond-
ing inputs of the AND gate array. The outputs of
the AND gates are then distributed over the output
ports, again depending on the location of the switch.
Notice that 15 output control signals are generated,
one per destination in the system (except for the lo-
cal node). Figure 8 shows the case for the AND
gate generated for node 0 at switch 5 (2nd row and
1st column of the mesh). This output signal will
be forwarded through the north (N) output port.
The logic at each switch is minimum, consisting of
16 AND gates, most of which with just two entries.
The signal distribution blocks are simply a rearrange-
ment of the input and output control signals to the
appropriate inputs and outputs of the AND gates.

To better balance the wires, we can use a mixed
approach where wires for half the nodes are mapped
YX and wires for the other half of nodes are mapped
XY. The latency through the GCN does not change
as the path follows the same manhattan distance.
Figure 9 shows the case where nodes with the un-
derlined ID number follow the YX mapping and the
other follow XY mapping. This way we achieve a
perfect distribution of wires, where each bidirectional
port handles 10 wires for a 4× 4 mesh network.

As the system size increases, the number of
wires increases, but not the logic complexity at the



switches. For a N ×N network, this mapping strat-
egy requires (N2 +N)/2 wires per direction and di-
mension.

Fig. 9. Control wire distribution for mixed XY/YX mapping.

C. Switch Design: Support for the gather control
network

In this section we provide an analysis of the over-
head of the GCN. The basic switch described in Ssec-
tion II-A has been implemented using the 45nm tech-
nology open source Nangate [8] library with Synop-
sys DC. Cadence Encounter has been used to per-
form the Place&Route. Link width and flit size are
set to 8 bytes. Both 4 × 4 and 8 × 8 2D meshes
have been implemented. Two scenarios are ana-
lyzed, a conventional 2D mesh without introducing
the gather network circuit, and the same 2D mesh
when the gather network circuit is added.

Table I shows the critical path of a conventional 2D
mesh network when two types of switches are used
(with and without registers at output ports). Two
link lengths have been analyzed: 1.2mm and 2.4mm.
As it can be seen, a registered switch has a lower
critical path than the non registered switch. By now
on, the registered switch will be used to analyze the
impact when introducing the GCN.

TABLE I

Conventional 2D mesh critical path.

Critical path (ns) N.R. Switch R. Switch

link length (mm) 1.2 2.4 1.2 2.4
2D mesh 1.86 2.17 1.35 1.75

Table II shows the critical path of the gather net-
work circuit when analyzed in isolation, which is
fixed by the dedicated logic that connects the two
most physically separate nodes in a chip. The la-
tency of this circuit depends on the mesh radix, since
the gather network critical path crosses the whole
network. Then, as the number of nodes increases
and the link length does too, the critical path of the
gather network circuit increases.

For a 4×4 network with a link length of 1.2mm, the
gather network critical path is smaller than the crit-
ical path of a conventional network, and hence, the
gather network is able to work at the same operating
frequency than the conventional 2D mesh. That is,
in that case, introducing the dedicated circuit does

TABLE II

Gather control network critical path.

Critical path (ns) 4x4 Network 8x8 Network
link length (mm) 1.2 2.4 1.2 2.4

GCN 1.23 2.20 2.65 4.32
2D mesh 1.35 1.75 1.35 1.75

not affect the rest of the network. In contrast, if the
link length is increased, the gather network has a
higher critical path than the conventional 2D mesh.
That implies two possibilities. First, the whole net-
work increases its clock cycle to that fixed by the
gather network circuit. Second, the 2D mesh oper-
ates at the same clock cycle while the gather network
circuit requires 2 clock cycles to operate. When de-
signing an 8 × 8 network, it can be seen that the
gather network circuit does not scale as well as the
point-to-point communication protocol of the NoC.
However, it can be noticed that in the worst case
the GCN is still able to cross the network in 4.32 ns
(3 clock cycles). As we will see in the performance
evaluation section, much higher delays in the gather
network will not induce any penalty to performance.
Table III shows the area of a switch and the area

occupied by the gather network circuitry in a single
switch. In a non registered switch, the area overhead
introduced by the gather network circuit is just an
1.54%. In a registered switch this overhead increases
up to 2.81%.

TABLE III

Switch and gather control network circuit area.

Area (mm2) N.R. Output R. Output

Switch 0.132 0.165
GCN 0.20 ∗ 10−2 0.45 ∗ 10−2

III. Evaluation

In this section we provide an evaluation of the
resulting coherence protocol co-designed with the
NoC. In particular, we compare the performance
with different applications when using the Ham-
mer protocol with neither broadcast nor gather sup-
port at NoC level (HAMMER), the Hammer pro-
tocol with NoC built-in broadcast support (HAM-
MER BC), the Hammer protocol with both broad-
cast and gather control network support (HAM-
MER BC GCN), and a MOESI directory-based pro-
tocol (DIRECTORY).
We implemented the NoC and all the coherency

protocols with an in-house memory/network simu-
lator which is cycle-accurate and flit-level accurate.
The memory/network module has been integrated
into the Graphite simulator [9] which allows us to
run applications and capture memory accesses.
We ran several applications of SPLASH-2 bench-

mark suite on the 16-core CMP system considered
so far. Broadcast is achieved by following the XY
routing. By default, the control gather network is
modeled with 2 cycle delays. Each tile has a 128KB
private L1 cache (64KB for instructions and 64KB
for data, tag and cache latencies are set to 1 and 2



cycles) and a 512KB L2 bank (tag and cache laten-
cies are set to 2 and 4 cycles); the total size of the
L2 cache is thus 8MB.
Figure 10 shows the normalized execution time

for different SPLASH-2 applications when using the
different protocols and NoC implementations. As
a first result, we can see how directory protocol
achieves much lower execution time when compared
to a Hammer protocol with no NoC support. In some
applications, execution time can be reduced by 17%.
On average, execution time is reduced by 6%.

Fig. 10. Normalized execution time for different coherence
protocols and different applications.

Now, as we provide NoC support for the Ham-
mer protocol we can see how execution time reduces
significantly. As a first measure, adding a broadcast
facility reduces execution time by %3 on average (%7
in some applications). Furthermore, execution time
is reduced again when the GCN is in place. On av-
erage, execution time is now 8% lower than a naive
Hammer protocol. Indeed, execution time is even
lower that when using directories. This is due to the
speedup in the notification of the ACK messages that
are needed also in directory-based protocols. This
benefit is much higher than the overhead in broad-
casting all the nodes in the system.
Figure 11 shows the normalized number of mes-

sages sent over the network for the different protocol-
network support combinations. As can be seen, the
directory-based approach achieves a significant re-
duction in messages overhead. Indeed, only 40% of
messages are needed (when compared with HAM-
MER). Notice now how the different NoC additions
(broadcast and GCN) help in reducing significantly
the number of messages in the network. Indeed,
when combined, the Hammer protocol has similar
traffic overhead than DIRECTORY. Therefore, the
Hammer protocol is able to cope with directory-
based protocols without the overhead of managing
directory structures, and with no significant messag-
ing overhead over the network.
Figure 12 shows the performance achieved with

HAMMER BC GCN when the GCN has different
delays. We used a gather control network ranging
from a 2-cycle delay up to a 128-cycle delay. No-
tice that we showed realistic delays of up to 4 cycles
can be achieved even for 8 × 8 configurations. As
we can observe, the results are quite insensitive to
low and medium GCN delays. Indeed, performance
is not significantly affected even for a 64-cycle GCN.
Only, on average, execution time is increased by 1%.

Fig. 11. Normalized number of injected messages for differ-
ent coherence protocols and different applications. GCN
signals are not included.

Indeed, for a 8 cycle delay (which gives a large slack
in the design), performance is unaltered. Only when
using large (and unrealistic) 128-cycle delays the per-
formance is impacted and the benefits of the GCN
are cancelled (performance is similar to the HAM-
MER BCAST approach).

Fig. 12. Execution time with different gather network delays.

IV. Related Work

Cache coherence protocols have traditionally
maintained a firm abstraction of the interconnection
network fabric as a communication medium. More
recently, however, some proposals exploring on-chip
network optimizations for cache coherence protocols
have appeared.

Cheng et al. [10] leveraged the heterogeneous in-
terconnects available in the upper metal layers of
a CMP, mapping different protocol messages onto
wires of different widths and thicknesses. Flores et
al. [11] propose to combine a protocol-level technique
with the use of a simpler heterogeneous interconnect.
Eisley et al. [12] propose an implementation of the
coherence protocol within the network based on em-
bedding directories in each switch node. In [13], it
is presented a priority-based NoC, which differen-
tiates between short control signals and long data
messages to achieve a significant reduction in cache
access delay. Walter et al. [14] explore the benefits
of adding a low-latency, customized shared bus as an
integral part of the NoC. More recently, Vantrease et
al. [15] advocate nanophotonic support for building
high-performance atomic cache coherence protocols.

The AMD’s Coherent HyperTransport (TH) [6]
implements the Hammer broadcast-based protocol
enabling the construction of small-scale multiproces-
sors. Subsequently, the HyperTransport Assist [16],
developed by AMD for the 12-core Magny Cours,



added a directory cache to reduce the frequency of
broadcasts. Also, the Intel’s QuickPaht Interconnect
(QPI) implements two different protocol modes [17].
In one of them coherence transactions are broad-
casted and every core must respond to the home with
a snoop response that indicates the state of the block
at that core. JETTY [18] and Blue Gene/P [19] are
two proposals to filter the broadcast requests that
would miss at destination nodes in order to reduce
energy consumption due to cache look-ups. Filtering
has also been proposed at source nodes [20], [21] to
save energy and bandwidth.

Proposals for efficient multicast support in on-chip
networks have also appeared [22]. Additionally, it
has been evaluated the case of using this kind of sup-
port in combination with a cache coherence proto-
col implementing imprecise directories, demonstrat-
ing that multicast support is not enough to com-
pletely remove the performance degradation that the
inexact sharing codes introduce [23].

V. Conclusion

The Hammer protocol scales to a large number of
cores as it does not require large memory structures
to keep the sharer’s list typically found in directory-
based protocols. However, the network traffic re-
quirements of Hammer impacts the performance sig-
nificantly. We have redesigned a standard mesh-
based NoC and extended it to support a dedicated
and set-aside gather control network, which is made
of a set of AND gates along a tree wiring enabling
the fast notification of ACK messages.

The wiring requirements for the gather control net-
work keep low up to 256-core systems, and with a low
delay of few network cycles. Area impact is lower
than 3% of the switch area.

With the GCN support and built-in broadcast, the
Hammer protocol is able to cope with the perfor-
mance of directory based approaches, even achiev-
ing better performance. Network traffic is reduced
significantly and put on par to directory-based pro-
tocols. Therefore, the Hammer protocol behaves as
the directory-based protocols without the expensive
control structures required, thus enabling Hammer
to effectively scale.
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