
Characterization of CAR Servers for
Augmented Reality Marker Tracking

Vı́ctor Fernández, Juan M. Orduña, Pedro Morillo, Vicente Cavero 1

Abstract—Collaborative Augmented Reality (CAR)
systems allow multiple users to share a real world
environment including computer-generated images in
real time. Currently, the hardware features of most
mobile phones provide excellent multimedia services,
and it also includes wireless network capabilities that
offer a natural platform for CAR systems. However,
the performance of the mobile CAR applications un-
der different conditions, like the number and type of
devices in the system, has not been studied yet.

This paper presents the experimental character-
ization of CAR systems based on mobile phones,
providing quantitative results about well-known per-
formance metrics in distributed systems like system
throughput and system response times. The char-
acterization results show that the system saturation
point depends on the overall percentage of CPU uti-
lization in the computer platform acting as the sys-
tem server, although it is not a fixed value and it is
inversely related to the number of processor cores.
Also, the results show that throughput of CAR sys-
tems heavily depends on the kind of client devices,
but CAR systems can efficiently support some hun-
dreds of clients in any case. Another important result
is that the CAR system throughput is limited by the
server I/O in some cases. Therefore, any improve-
ment in CAR systems should be addressed to alleviate
the server I/O, even though it may add computational
overhead to the server.

Key words—Collaborative Augmented Reality; Mo-
bile Phones; Performance evaluation

I. Introduction

AU gmented Reality (AR) systems have been
widely used in numerous applications such as

medical procedures, scientific visualization, manu-
facturing automation, cultural heritage and mili-
tary applications [1]. The term Augmented Reality
(AR) defines computer graphic procedures or appli-
cations where the real-world view is superimposed
by computer-generated objects in real-time[2]. From
the beginning of AR systems, the potential of col-
laborative AR (CAR) systems was exploited for dif-
ferent activities such as Collaborative Computing [3]
or Teleconferencing [4]. Wearable devices were used
to provide CAR systems, where a wearable AR user
could collaborate with a remote user at a desktop
computer [5].
On other hand, lot of devices comprising a comput-

ing embedded system pervade our daily life, and they
have been used for CAR systems. One of these de-
vices are mobile phones [6]. Effectively, current mo-
bile phones have full color displays, integrated cam-
eras, fast processors and even dedicated 3D graph-
ics chips, and they have become an ideal platform
for CAR systems [7]. However, the wide variety of

1Departamento de Informática, Universidad de Va-
lencia, e-mail: {Victor.Fernandez-Bauset, Juan.Orduna,

Pedro.Morillo, Vicente.Cavero}@uv.es

current mobile phones, with different graphic and
processing capabilites, and different operating sys-
tems, can have significant effects on the performance
of the CAR application, in terms of system latency,
frames per second or number of supported clients
with certain latency levels. Taking into account that
CAR applications should be interactive, the design of
an efficient CAR application must take into account
these effects in order to fulfill the required specifi-
cations. Therefore, in order to design efficient CAR
systems based on mobile devices, it is necessary to
characterize the behavior of these systems in terms
of average response times under different conditions,
as well as system throughput. In turn, this char-
acterization should be performed on both the client
devices (mobile phones) and the system server(s).

In a previous work, we performed a performance
characterization of different mobile phones for Col-
laborative Augmented Reality applications, [8]. In
order to achieve this goal, we implemented a simple
CAR application on a real system and measured the
performance achieved with different mobile phones.
The results showed that the most time consuming
stage in a CAR application is the marker detection
stage, followed by the image acquisition stage, the
rendering stage and finally, the transmission stage.
In this paper, we present a performance character-
ization from the server side, measuring the system
response time and system throughput when vary-
ing different systems parameters like the number of
clients in the system, the Area of Interest (AOI) [9] of
clients (i.e., the number of neighbors to which mes-
sages should be sent), and the cycle time of clients.
For characterization purposes, we have developed a
multithreaded CAR server that supports simulated
clients (simulated mobile devices) with the behavior
measured in our previous work [8]. We have time-
stamped every message generated within this CAR
system, in order to measure the performance of ev-
ery device. The characterization results show that
the system saturation point depends on the overall
percentage of CPU utilization in the computer plat-
form acting as the system server. Although the CPU
threshold is not a fixed value, it is inversely related
to the number of processor cores. Moreover, the re-
sults show that the CAR systems throughput heavily
depends on the kind of client devices, but for certain
kind of devices, the system bottleneck is the server
I/O. These results suggest that any improvement in
CAR systems should be addressed to alleviate the
server I/O, even though it may add computational
overhead to the server.

The rest of the paper is organized as follows: Sec-

tion II shows some related work about CAR ap-
plications on mobile phones. Section III describes
the characterization setup, and Section IV shows the
characterization results. Finally, Section V presents
some conclusion remarks and the future work to be
done.

II. Related Work

Augmented Reality superimposes multimedia con-
tent - 3D object, text, sound, etc - to real world
through a display or screen. In order to locate dig-
ital contents on a specific image of the real world
point, some references within the image is needed.
These references are known as markers, and two
methods are usually used: natural feature tracking
and fiducial marker tracking. The former method
uses interest point detectors and matching schemes
to associate 2D locations on the video with 3D loca-
tions [10]. This process can be grouped in three big
phases: interest point detection, creation of descrip-
tor vectors for these interest points, and comparison
of vectors with the database [11]. The latter method
uses fiducial markers to find a specific position of real
world. This process can be divided in three phases:
edge detection, rejection of quadrangles that are too
large or too small, and checking against the set of
known patterns [10].

Although real-time natural feature tracking over
mobile devices has been currently achieved [10], fidu-
cial marker tracking is more widely used, because
it allows simultaneous computational robustness and
efficiency. A large number of locations and objects
can be efficiently labeled by encoding unique identi-
fiers on the markers. Additionally, the markers can
be detected with angles near to 90 degrees [10].

III. Characterization setup

In order to analyze the behavior of CAR sys-
tems based on mobile devices, we have developed a
multithreaded CAR server that supports simulated
clients (simulated mobile devices) with the behavior
measured in our previous work [8]. We have time-
stamped every message generated within this CAR
system, in order to measure the performance of every
device. The system configuration will consist of one
server, and a certain amount of mobile devices that
are scanning the visual space of their video camera
looking for a marker that will be converted into a
3D object in their display. The main performance
metrics in distributed systems are throughput and
latency [12]. However, in order to avoid clock skews
when measuring the system latency in distributed
systems, the same device should measure the initial
and final time. Therefore, we consider round-trip
times instead of system latencies.

Since we are considering collaborative systems, af-
ter each updating of the object location, the mobile
device will send a location update message (contain-
ing the new location) to each of its neighbor devices
(defined by the AOI size) through the server (that is,
it sends the location update message to the server,

and then the server re-sends the message to the ap-
propriate clients). For characterization purposes, the
destination clients return an acknowledgment mes-
sage (ACK) to the server, which, in turn, forwards
it to the source client. When the source client has
received the ACK messages corresponding to the lo-
cation update from all the clients in its AOI, then
it computes the average system response for that lo-
cation update. Figure 1 illustrates the action cycle
that takes place for each of the mobile clients in the
system.

Fig. 1. Stages of the action cycle in each mobile device.

Once the message with the location update is sent,
the action cycle performed by each client is com-
posed of the following steps: first, it performs one
new image acquisition followed by a marker detec-
tion stages. Then, the client waits until the cycle
period (determined by the action frequency, a sys-
tem parameter) finishes. Next, if the acknowledg-
ments from all the neighbors have been received, a
new message with the new marker location is sent.
If not all the acknowledgments have been received,
then it waits until a maximum threshold of 20 sec-
onds, and then a new round of messages (with the
latest marker location) are sent to the neighbors
through the server. The neighbors simply returns
an ACK message to the sender device through the
server. The server simply forwards the messages to
the corresponding destination clients. It must be no-
ticed that the mobile devices will not send a new
round of messages with a new location update until
it has received the acknowledgment message from all
its neighbors, even although new marker detection
stages have been completed in the device.
This characterization setup considers that all the

required static content in the scene has been loaded.
According to recent works [13], in these cases the
network bandwidth required is less than 50 kbps for
performing this information exchange. Since we are
using a Gigabit Ethernet, we ensure that network
bandwidth does not become a system bottleneck.
The system latency provided for each location up-

date is computed by recording a timestamp when the
first message is sent to the server. Next, a second

timestamp is recorded with the last ACK message
for that location update received from the server.
The system response time is computed by subtract-
ing these two timestamps. The server response time
is computed by timestamping both each message for-
warded from each client and the reception of the cor-
responding ACKmessage from the destination client.
Also, the percentage of CPU utilization is measured
both in the server and the mobile devices every half
second.

We have implemented a multithreaded server,
where each server thread manages a group of clients
within a given AOI. Thus, for example, with a sys-
tem configuration of 500 mobile clients and an AOI
size of 10 clients, we have 50 server threads, each
thread supporting 10 clients. We have considered a
maximum configuration of 1000 clients, resulting in
100 server threads. For system characterization pur-
poses, we have considered a single server. Neverthe-
less, the system performance greatly depends on the
server implementation (see the results in Section IV).
Therefore, in order to make a robust characterization
of CAR systems, we have implemented two different
versions of the server, denoted as passive and active

server. The active server forwards each location up-
date message to the corresponding neighbor clients,
and it collects the ACK messages received from the
neighbor clients. When all the ACK messages cor-
responding to a location update message have been
received, then a single ACK message is sent to the
corresponding source client. The passive server sim-
ply forwards each location update message to the
corresponding neighbor clients and the ACK mes-
sages received from the neighbor clients to the source
client. In this sense, no computations neither data
structures are needed in the server, although more
messages are exchanged between the server and the
clients (the network traffic increases).

On other hand, each client process simulates 50
mobile devices, using two threads per simulated de-
vice. We have uniformly distributed the number of
the required client processes for each system config-
uration. Since we have 10 desktop computers avail-
able for hosting the clients, the configuration for
1000 clients consists of 10 computers hosting 5 client
processes each (100 threads per computer hosting
clients).

The previous work showed that Google phone
HTC Nexus One was the fastest device, with a pe-
riod cycle of 167.11 milliseconds, while the Motorola
Milestone was the slowest one, with a period cycle of
698.34 milliseconds. We have considered these values
as the limits for characterization purposes. Also, we
have considered four different values for the AOI size:
5, 10, 20, and 25 neighbor clients. Finally, we have
considered a number of clients in the system ranging
from 100 to 1000. It must be noticed that usually,
actual CAR applications do not contain more than a
hundred clients (for example, more than a hundred
persons within the same lounge using collaborative
Augmented Reality for studying art masterpieces),

TABLE I

System performance for the active server

implementation with an AOI of 10 neighbors

a-One a-Miles
AOI 10 RT CPU RT CPU
100 70.27 10.9 72.89 7.1
200 68.85 21.8 69.35 13.0
300 73.27 36.4 73.67 17.8
400 74.81 44.0 78.13 18.8
500 79.71 57.0 75.9 26.0
600 83.58 70.0 80.35 31.7
700 83.85 82.3 81.73 31.0
800 179.75 84.2 78.69 40.8
900 222.94 84.0 76.32 43.9
1000 255.67 85.2 78.29 45.1

due to the size of the augmented models. Thus,
reaching thousands of clients clearly exceed the worst
case for this kind of applications.

IV. Performance Evaluation

We have measured the average system response
time for all the location updates send by all the
clients in the system. In this sense, we have con-
sidered the system response time (in milliseconds)
for each location update as the time required for re-
ceiving all the acknowledgments from the neighbor
clients in the AOI for each update sent by a client.
Also, we have measured the average response time
in the server (in milliseconds) as the time required
by the destination clients to answer the server mes-
sages. Additionally, we have computed the standard
deviation for the response times, and the percentage
of the CPU utilization in the system server, since it
can easily become the system bottleneck. The com-
puter platform hosting the system server is a Intel
Core 2 Duo E8400 CPU running at 3.00 GHz with
4 Gbytes of RAM, executing an Ubuntu Linux dis-
tribution with the 3.0.0-14-generic x86 64 operating
system kernel.

Table I shows the performance evaluation results
for the active server implementation (denoted with
the ”a-” prefix in the tables) and considering an AOI
size of 10 neighbors for each client. The most-left
column in this table shows the number of clients in
the system (and the number of neighbor clients in
the AOI). The values in this columns range from 100
to 1000 clients in the system. Next, there are two
groups of three columns each that shows the results
for the fastest (HTC Nexus One, whose results are la-
beled as ”One”) and the slowest client device consid-
ered (Motorola Milestone, whose results are labeled
as ”Miles”). The first two columns in each group of
columns show the average system response time (in
milliseconds) and its standard deviation. The third
column shows the percentage of the CPU utilization
in the system server.

Table I shows clearly different behavior and perfor-
mance for different client devices. Thus, comparing

TABLE II

System performance for the passive server

implementation with an AOI of 10 neighbors

p-One p-Miles
AOI 10 RT CPU RT CPU
100 78.23 16.0 77.03 9.9
200 74.02 25.2 78.16 26.0
300 79.45 37.0 83.6 25.0
400 81.02 59.6 82.54 23.8
500 93.61 68.7 88.27 31.3
600 147.73 83.8 87.66 33.0
700 195.47 83.2 88.45 33.7
800 237.71 85.9 94.43 62.0
900 270.25 84.2 84.8 69.3
1000 300.96 84.2 87.72 46.5

the system response time (column RT) for the a-One
(i.e., active server implementation and all clients us-
ing a Nexus One device) and a-Miles configurations,
it can be seen that the RT slightly increases (or de-
creases) as the number of clients in the system in-
creases in the case of the a-Miles, ranging from 72.89
milliseconds to 81.73 milliseconds. However, in the
case of the a-One, when the population reaches 800
clients there is a huge increase in both the RT value
and in its standard deviation with respect to the val-
ues for smaller population sizes. For higher popula-
tion sizes, the increase in the RT values is also sig-
nificant.

Table II shows the performance results for a CAR
system with the same configuration except that the
server implementation is now the passive server (de-
noted with a ”p-” prefix). This table shows a similar
behavior of the CAR system to the one shown in
Table I for the active server. The only difference is
the huge increase in the RT values of the ”p-One”
for a smaller population size (600 clients instead of
800 clients in the ”a-One” configuration). These re-
sults show that the system reaches saturation for a
population size of 800 clients in the case of a-One,
and for a population size of 600 clients in the case
of the p-One. However, in both cases the saturation
starts when the percentage of CPU utilization in the
system server reaches around 84% (83,8% in the pas-
sive server and 84,2% in the active server implemen-
tation). The configurations ”a-Miles” and ”p-Miles”
do not reach saturation, since the RT remains almost
constant as the population size increases. The reason
for the different system behavior, when changing the
devices, is the greater period cycle of the Motorola
Milestone, which imposes a lower system workload
since it generates new location updates at a much
lower rate.

Regarding the acceptable limits for the RT values,
some works consider 250 milliseconds as the response
time limit for providing interactivity to human users
[14]. If we consider such threshold value, then we can
state that the throughput limit with the HTC Nexus
One is 900 clients when using the active server, and

TABLE III

Server Response Times

p-One
AOI 10 RT CPU SRT MaxSRT
100 78,23 16 18,2 20,15
200 74,02 25,2 18,5 24,9
300 79,45 37 25,78 28,62
400 81,02 59,6 27,71 30,4
500 93,61 68,7 31,83 40,5
600 147,73 83,8 40,93 44,37
700 195,47 83,2 49,85 52,39
800 237,71 85,9 58,08 62,23
900 270,25 84,2 64,79 68,9
1000 300,96 84,2 68,77 75,48

800 when using the passive server. That is, the sys-
tem performance is surprisingly improved when the
server reduces the traffic exchanged with the source
clients (it collects all the ACK messages and only
sends the source client a single ACK) at the cost of
performing more computations (counting the ACK
received for each update message). In order to find
the reason for this behavior, we have measured the
server response times for all the configurations con-
sidered. Table III shows the same results for the
”p-one” configuration shown in table II, but now
adding the corresponding average response times in
the server (the average response time required by
clients for sending back their ACK messages to the
server, measured from the server) and their maxi-
mum values.

Table III shows that the average response times
do not reach 70 milliseconds for the p-One device re-
gardless of the population size, while the maximum
values for the server response times do not reach 80
milliseconds. These values indicate that the system
bottleneck (the reason for the significant average sys-
tem response times shown in Tables II and I) is lo-
cated in the server. Since the comparison between
these two tables shows that the active server achieves
better performance than the passive server, these re-
sults suggest that the server I/O with the source
client is the system bottleneck. It is important to
notice that each source client in the passive server
must not only receive all the ACKs for each message
sent, but also it must send an ACK for every loca-
tion update received from its neighbors. Although
the active server adds more computational workload
to the server for the same system workload than the
passive server, it alleviates the server I/O with each
client, and therefore the performance is improved.

In order to show that the behaviors shown in Ta-
bles I and II are consistent for other workloads, Ta-
bles IV and V show the results corresponding to a
system configuration when all the clients have an
AOI size of 20 neighbor clients. These tables show
behaviors that are very similar to the ones shown
in Tables I and II, except for the fact that the RT
values are in general higher, and the system reaches

TABLE IV

System performance for the active server

implementation with an AOI of 20 neighbors

a-One a-Miles
AOI 20 RT CPU RT CPU
100 77.37 23.8 78.65 12.8
200 77.13 38.0 77.69 16.0
300 79.59 56.6 84.26 35.4
400 83.07 74.2 96.71 38.0
500 195.92 82.9 81.19 40.0
600 246.46 82.8 103.62 46.0
700 297.3 82.8 97.92 47.0
800 350.88 84.2 82.63 62.4
900 394.66 86.0 93.31 56.5
1000 410.14 87.0 88.52 66.3

TABLE V

System performance for the passive server

implementation with an AOI of 20 neighbors

p-One p-Miles
AOI 20 RT CPU RT CPU
100 88.22 27.6 93.88 20.2
200 94.57 45.5 94.98 21.2
300 128.16 73.3 98.01 29.7
400 195.92 84.2 129.24 37.7
500 273.58 84.0 101.96 43.0
600 326.79 86.2 121.53 50.5
700 400.45 87.0 148.84 83.9
800 447.02 87.0 110.41 65.3
900 473.99 86.0 101.4 67.3
1000 467.04 86.9 106.66 74.7

saturation for lower population sizes. The results for
the Milestone device show that the system does not
reach saturation (there is not a significant jump in
the RT values as the population size increases) in
any of the tables. However, the results shown in Ta-
ble IV for the a-One show a jump in the RT values for
a population size of 500 clients, when the percentage
of CPU utilization is 82.9%. In the case of the p-One
configuration (Table V), the disruption occurs for a
population size of 400 clients, when the percentage of
CPU utilization is 84.2%. That is, again the system
saturation point is a percentage of CPU utilization
in the system server of around 84%.

Finally, we have studied the saturation point of
the CAR configurations considered. Although they
are not shown here for the sake of shortness, we
have obtained a percentage of CPU utilization in the
server around 84% as the system saturation point
for all the configurations considered. However, sim-
ilar distributed systems like Distributed Virtual En-
vironments (DVEs) were reported to reach satura-
tion when any of the server reaches around 95-98%
of CPU utilization [15]. The difference between 85%
and 98% of CPU utilization for reaching the satu-
ration point can be explained by the shared mem-
ory architecture of current multicore processors (the

TABLE VI

Performance evaluation for two different computer

platforms

8 cores (i7) 2 cores (Core Duo)
AOI 25 RT CPU RT CPU
100 90.91 24.1 96.03 60.4
300 98.65 33.6 167.58 86.1
500 228.98 43.5 357.13 92
700 357.95 45.3 480.87 85.3
900 478.95 48.3 505.89 89.0

dual core processor in the computer platform used as
simulation server). The synchronization of the ker-
nel calls, together with the synchronization among
threads in the application, prevent the CAR system
from fully exploiting the computational power of all
the processing cores at the same time, reaching satu-
ration for a lower overall percentage of CPU utiliza-
tion. The performance characterization of DVEs was
performed on single core processors, and therefore
those systems reached around 98% before reaching
saturation. In order to show that this is the rea-
son for this behavior, we have performed the same
tests not only with the computer platform described
above (dual core processor), but also with a differ-
ent multicore computer platform, consisting of an In-
tel(R) Core(TM) i7 960 CPU (eight cores) running
at 3.20GHz with 8 Gbytes of RAM and executing a
SuSE Linux 2.6.37.6-0.5-desktop operating system.
A representative example of the results obtained in
such tests is shown in Table VI, that shows the re-
sults for the p-One configuration with an AOI size of
25 neighbor clients.

Table VI shows that the average system response
time hugely increases when the population size is
composed of 500 clients for the case of the Intel i7
platform, passing from 98.65 milliseconds to 228.98
milliseconds, while the standard deviation for this
parameter also double its value. That is, the system
saturation point for this server platform is a pop-
ulation size of 500 clients, and for this saturation
point the overall percentage of CPU utilization for
this execution is 42.46% (fourth most-left column in
table VI). However, the results obtained with an In-
tel Dual Core processor show that the system reaches
saturation with 300 clients, where the average sys-
tem response time jumps from 96.03 milliseconds to
167.58 milliseconds.For this system response time,
the overall percentage of CPU utilization is 86.1%.
That is, as it could be expected, the system through-
put is increased when a more powerful processor is
used as the system server, but the saturation point
of the CAR system is not a fixed value for the over-
all percentage of the CPU utilization, and it depends
on the number of processor cores. Although they are
not here due to space limitations, the system satura-
tion point around 43% of CPU utilization arose for
all the configurations tested with this platform.

V. Conclusions and Future work

This paper has proposed the experimental charac-
terization of CAR systems based on mobile phones,
providing quantitative results about well-known per-
formance metrics in distributed systems like system
throughput and system response times. The results
show that the system saturation point depends on
the overall percentage of CPU utilization in the com-
puter platform acting as the system server, although
it is not a fixed value and it is inversely related to
the number of processor cores. Also, the results show
that throughput of CAR systems heavily depends
on the kind of client devices, but CAR systems can
efficiently support some hundreds of clients in any
case. Another important result is that the CAR sys-
tem throughput is limited by the server I/O. There-
fore, any improvement in CAR systems should be
addressed to alleviate the server I/O, even though it
may add computational overhead to the server.

As a future work to be done, we plan to evaluate
different CAR systems implementations oriented to
minimize the server I/O workload.

Acknowledgment

This work has been jointly supported by the
Spanish MICINN and the European Commission
FEDER funds, under grants Consolider-Ingenio 2010
CSD2006-00046 and TIN2009-14475-C04.

References

[1] S. Cawood and M. Fiala, Augmented Reality: A Practical
Guide, Pragmatic Bookshelf, 2008.

[2] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier,
and B. MacIntyre, “Recent advances in augmented re-
ality,” Computer Graphics and Applications, IEEE, vol.
21, no. 6, pp. 34 –47, 2001.

[3] M. Billinghurst, I. Poupyrev, H. Kato, and R. May, “Mix-
ing realities in shared space: an augmented reality inter-
face for collaborative computing,” in IEEE International
Conference on Multimedia and Expo (ICME 2000), 2000,
vol. 3, pp. 1641–1644.

[4] M. Billinghurst and H. Kato, “Real world teleconferenc-
ing,” in Proc. of the conference on Human Factors in
Computing Systems (CHI 99), 1999.

[5] Wayne Piekarski and Bruce H. Thomas, “Tinmith-hand:
Unified user interface technology for mobile outdoor aug-
mented reality and indoor virtual reality,” 2002.

[6] Mathias Mahring, Christian Lessig, and Oliver Bimber,
“Video see-through ar on consumer cell-phones.,” in IS-
MAR’04, 2004, pp. 252–253.

[7] A. Henrysson, M. Billinghurst, and M. Ollila, “Face to
face collaborative ar on mobile phones,” in Mixed and
Augmented Reality, 2005. Proceedings. Fourth IEEE and
ACM International Symposium on, October 2005, pp. 80
– 89.

[8] Victor Fernández Bauset, Juan M. Orduña, and Pedro
Morillo, “Performance characterization on mobile phones
for collaborative augmented reality (car) applications,”
in Proceedings of the 2011 IEEE/ACM 15th Interna-
tional Symposium on Distributed Simulation and Real
Time Applications, Washington, DC, USA, 2011, DS-RT
’11, pp. 52–53, IEEE Computer Society.

[9] S. Singhal and M. Zyda, Networked Virtual Environ-
ments, ACM Press, 1999.

[10] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni,
Tom Drummond, and Dieter Schmalstieg, “Pose track-
ing from natural features on mobile phones,” in Pro-
ceedings of the 7th IEEE/ACM International Sympo-
sium on Mixed and Augmented Reality, Washington, DC,
USA, 2008, ISMAR ’08, pp. 125–134, IEEE Computer
Society.

[11] Seung Eun Lee, Yong Zhang, Zhen Fang, S. Srinivasan,
R. Iyer, and D. Newell, “Accelerating mobile augmented
reality on a handheld platform,” in Computer Design,
2009. ICCD 2009. IEEE International Conference on,
October 2009, pp. 419 –426.

[12] J. Duato, S. Yalamanchili, and L. Ni, Interconnection
Networks: An Engineering Approach, IEEE Computer
Society Press, 1997.

[13] Tuomas Kantonen, “Augmented collaboration in mixed
environments,” M.S. thesis, Helsinky University of Tech-
nology, 2009.

[14] T. Henderson and S. Bhatti, “Networked games: a qos-
sensitive application for qos-insensitive users?,” in Pro-
ceedings of the ACM SIGCOMM 2003. 2003, pp. 141–
147, ACM Press / ACM SIGCOMM.

[15] P. Morillo, J. M. Orduna, M. Fernández, and J. Duato,
“Improving the performance of distributed virtual envi-
ronment systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 7, pp. 637–649, 2005.

