

Abstract— Trigonometric functions are used to solve

several computing problems. The algorithms that

determine these functions require a good precision and

accuracy for these systems, and it is also necessary to have

shorter response times and smaller latencies.

This paper proposes a methodology for trigonometric

functions implementation in reconfigurable FPGA devices,

using preloaded data tables in ROM memory blocks on the

device’s embedded memory.

The developed modules can be handled as independent

modules and can reconfigure precision characteristics

through firmware upgrades.

Keywords—Trigonometric function, FPGA, Memory

blocks.

I. INTRODUCTION

mong the several tasks of computers, one

example is processing data information for

calculating mathematical functions. It has been

observed in some surveys [1] that dedicated hardware

and parallelized modules in FPGA devices can show

better development for these tasks.

Systems that calculate trigonometric mathematical

functions consider some characteristics, such as

precision and range in order to present desired results.

The circuit interconnections increase and the utilization

area on the FPGA is determined by these

characteristics[7].

II. IMPLEMENTATION

Implemented functions are the sinusoidal functions,

where sine and cosine functions have a mathematical

relation. The cosine function is also a sine function with

a phase-shift of 90 degrees. Because of this relation and

using the same methodology, both developed modules

have a similar construction.

The methodology followed to determine sine and

cosine trigonometric functions is related to pseudo-

operations using preloaded data tables in ROM memory

blocks on the FPGA device’s embedded memory [8].

Some purposes are to reduce maximum delay time and

data-flow latency and simplify implemented algorithms

for required results [9],[11].

Departamento de Electrónica, CUCEI, Universidad de Guadalajara1,

(ffaandy@gmail.com), (ehecatl.joel@gmail.com), {juan.raygoza,

jorge.rivera }@cucei.udg.mx,

Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad

Guadalajara2, {sortega, toledo}@gdl.cinvestav.mx

Building a value-matrix, where the values are

calculated using algorithms that involve sine and cosine

trigonometric modules are developed, and the goal is to

estimate speed and precision for continuous operation.

A. Arithmetic Module Description

Each arithmetic module performs the calculation of

two functions (sine and cosine). The result is obtained

from a pre-loaded table, located in an embedded ROM

memory module available in the FPGA device (Virtex4,

model XC4vlx15-12sf363). The “result” from the

operation is selected from the table through a process

that converts the input angle value into a memory

address.

B. Black Box Description

The desired specifications for the device lead to the

following design, seen as a black box device (Fig. 1).

Trigonometric
Module

clk

rst

data

output

18

18

sin/cos

Fig. 1. Black Box Diagram for the Trigonometric Module.

C. Ports

 Data: 18-bits input bus, seen Figure 2.

 Reset: Reset input signal.

 Clk: Clock input signal.

 Sin/cos: Input select sine or cosine function.

 Output: 18-bits output bus that will show the

result of a cosine/sine operation over a given angle,

seen Figure 3.

Fig. 2 Input Bus array for the Trigonometric Module.

Fig. 3 Output Bus array for the Trigonometric Module.

A

Calculation Method for Trigonometric

Functions in FPGAs

Andrés Figueroa F.
 1
, J.J. Raygoza-Panduro

1
,

Ehecatl J. Chávez M.

1
, S. Ortega-Cisneros

2
,

Jorge Rivera D.
1
, Bernardino Castillo T.

2

D. Functional Description

According to the required specifications, the following

operating characteristics will be developed:

When data is placed in the data bus device (data)

representing a certain degree, it is accepted as a signed

number in a two complement format, with a precision of

0.05 °, the output port (output) output will show the

value of the trigonometric function, stored in an

embedded memory address. This output value

corresponds to the angle of entry.

E. Block Diagram

The method chosen to develop the device consists of

developing 3 individual modules that will be contained

in a top-level module.

Figure 4 shows the functional blocks of the

trigonometric module. The Complement/Locator block

receives a value degree and the two complement is done

if it is a negative degree. This block is also needed to

locate the memory address where the function value was

stored. The ROM memory is an embedded memory

created with the IPCore Generator tool. Due to angle

precision, memory space grows when a better precision

for the arithmetic module is needed.

The supplement block receives the sign, entire and

“douta” signals and produces final module response

output for the trigonometric module.

Fig. 4 Block diagram for the Trigonometric Module.

III. TRIGONOMETRIC FUNCTIONS

Figure 5 shows the unit circle with radio r, whose

center is at the origin of x and y axes of an orthogonal

system.

The sine of a real number t, where | t | is the length of

the arc shown, is given by the magnitude of a or the

coordinate of the point P1, while the cosine of t is given

by the magnitude of b or the x coordinate of the point P1

[2].

t being the arc of the unit circle shown, the range of

values that it may acquire is between 0° and 360°.

As shown, the values of the magnitudes for the sine

and cosine will always be between -1 and 1.

Fig.5. Unitary Circle.

A. Sine and Cosine Functions

The features for the development of the module that

calculates the function ()sin t are as follows:

 Odd Function:

)()(tsentsen (1)

 Maximum: 90º (1)

 Minimum: 270º (-1)

The features for the development of the module that

calculates the function cos(t) are as follows:

 Even Function:

)cos()cos(tt (2)

 Maximum: 0º, 360º (1)

 Minimum: 180º (-1)

B. Relationship between Sine and Cosine

Functions

To calculate the values of the cosine function, we use

this trigonometric equivalence:

cos() sin(90º)t t (3)

Fig.6. Cosine and Sine functions and its correspondence.

For more information about trigonometric functions,

please refer to [3].

IV. GENERAL OPERATION

To develop the desired circuit, the chosen method

consists of avoiding the arithmetic of trigonometric

functions. To achieve this goal, we used a series of

values, preloaded into ROM memory modules. We will

use the memory modules available in the FPGA (Virtex-

4)[3]. These modules will receive the value of the arc t

and based on this number the system will access a

memory locality and its value will be presented at the

output port.

A. Trigonometric Functions Calculation Method

In order to reduce the size of the memory used, instead

of a block of rows with values for every possible input

value t, we use the properties of symmetry and

frequency of functions (1), (2) y (3).

Both functions are periodic, so there is no point in

calculating values beyond 360ºt . The sine function

is odd, so it is not necessary to allocate results for

negative values of t. We simply change the sign of the

output that would be obtained for the same positive

value of t. The cosine function is even, so the results

relay only the magnitude of t and not on its sign. By

having an input accuracy of 0.05 °, twenty memory

addresses are needed to calculate the values of

trigonometric function for every input degree. Even

calculating only positive values from 0 to 360 ° for t, the

device will need an embedded ROM memory space of

7200 block addresses.

To calculate any angle, it is sufficient to know the

values of the functions for the first 90° and then convert

the requested angle to its complementary or

supplementary angle. Thus, the amount of used ROM

memory blocks is reduced to 1800 instead of 7200. To

calculate the values of the cosine function, we will use

the same equivalence trigonometric of (3).

B. Complementation Methodology

The methodology used for the complementation

operated on the signals representing the angle is as

follows:

• If the angle is negative, with a two complement, it is

complemented to its positive value.

• The input angle in positive form is multiplied by

twenty, because it is the memory space needed to

calculate trigonometric function values for every degree.

• If the angle is greater than 90 º, the system proceeds

to get its complementary / supplementary angle below

90 º.

• This angle is converted to a value that represents a

memory location into the ROM memory in the FPGA.

• For the Cosine module the entry angle will add up to

90 º.

C. Sine and Cosine module description

The SINE module shown in Figure 7 and the COSINE

module shown in Figure 8 calculate sine and cosine

functions. Both circuits have a strong mathematical

relationship, as they have a very similar structural design

described in (3).

SINE

clk

rst

data

output

18

18

Fig.7. Sine module.

Shown in figure 2 and 3, these modules present an 18-

bit format: 1 bit for sing, 9 bits for entire data and 8 bits

for fractional data. The output is presented an 18-bit

format as well: 1 bit for sing, 1 bit for entire data and 16

bits for fractional data.

COSINE

clk

rst

data

output

18

18

Fig.8. Cosine module.

Figures 9 and 10 show implemented blocks for sine

and cosine functions, the most important difference

between them is the COMPL ANGULO block, that

allows the COSINE module to shift 90 degrees from the

values for the SINE module, as mentioned in (3).

The sign signal at output port for the SINE module

depends on an input data angle sign. If the input angle is

negative, with a two complement format, this angle is

complemented in COMPL block in order to get a

positive value.

For that reason, if the input angle is negative, the entire

and fractional data are complemented in this block.

The SUM block determines the addresses in MEM

memory, in which one is saved sine function values for

0 to 90 degrees, and is used to determinate the output

value for sine or cosine modules at the output port.

COMPL

SIG

SIG

SUM

MUL

MUL

COMPL

DEGREE
18

ENT

DEC

SIG

9

8

11

11

CLK
CLK

RST

11
COMPL/

LOCATOR

SIN/COS

Fig.9. Sine/Cosine module. Part A.

COMPL
ANGULO

COMPL

SIG

SIG

COMPL

MEM

GRAD
OUTPUT16

18

COMPL/
LOCATOR

SIG

11

CLK

Fig.10. Sine/Cosine module. Part B.

Angle complementation is described as the way to find

sine function output values for an entire cycle using only

the first quadrant values saved in the embedded memory

in the FPGA.

Part of an angle complementation code in a hardware

description language VHDL is shown:

--If angle = 90º

 if (grad_x20 = "00011100001000" or

grad_x20 = "10001100101000") then

 complemento <= "00000000000000";

-- If angle = 270º

 elsif (grad_x20 = "01010100011000" or

grad_x20= "10101000110000") then

 complemento <= "00000000000000";

-- If angle < 90º

 elsif (grad_x20 < "0011100001000")

then

 complemento <= grad_x20;

-- If angle > 90º

 elsif (grad_x20 > "00011100001000"

and grad_x20 < "00111000010000") then

complemento <= "00111000010000"-

grad_x20;

-- If angle >= 180º

 elsif (grad_x20 >= "00111000010000"

and grad_x20 < "01010100011000") then

 complemento <= grad_x20 -

"00111000010000";

-- If angle > 270º and < 360º

 elsif (grad_x20 > "01010100011000"

and grad_x20 < "01100000111000") then

 complemento <= "01110000100000" -

grad_x20;

-- If angle >= 360º

 elsif (grad_x20 >= "01110000100000")

then

 complemento <= grad_x20 -

"01110000100000";

 end if;

end process;

signo <= signo_s(1) xor signo_s(0);

direccion_c <= complemento (entero+1

downto 0);

If the angle is equal to 90º, the entire output data is

active in “1” and the value temporal register is in “0”, it

is the register that addresses memory ROM.

If the angle is equal to 270º, the entire output data is

active in “1”, the sign bit is in “1” and the value

temporal register is in “0”. If there are other angles, the

entire output data is in “0” and the process continues

with angle complementation.

If the angle is less than 90º, the value temporal register

addresses memory ROM and the sign output data is in

“0”. In the second quadrant, if the angle is greater than

90º and less than 180º, the value temporal register is

180º minus the angle value sign of the output data is in

“0”.

If the angle is greater than 180º and less than 270º, the

value temporal register is angle value minus 180º, and

the sign output data is in “1”. It is the third quadrant.

If the angle is greater than 270º and less than 360º, the

value temporal register is 360º minus angle value, and

the sign output data is in “1”. It is the fourth quadrant.

If the angle is equal or greater than 360º, the value

temporal register is angle value minus 360º, the sign

output data depends on the value of the register. It is the

first quadrant again.

At the end, the output bit sign receives a value that

depends on the original bit sign and quadrants.

Figure 11 describes a Flow Chart of the angle

complementation block.

ANGLE
COMPLEMENT

ANG=90°

ANG=270°

ANG<90°

90°<ANG<180°

180°<ANG<270°

270°<ANG<360°

360°<ANG

ENTIRE=1
SIGN=0
GRAD=0

ENTIRE=1
SIGN=1
GRAD=0

ENTIRE=0
SIGN=0

GRAD=ANG

ENTIRE=0
SIGN=0

GRAD=ANG-90°

ENTIRE=0
SIGN=1

GRAD=ANG-180°

ENTIRE=0
SIGN=1

GRAD=ANG-270°

ENTIRE=0
SIGN=1

GRAD=ANG-360°

SI

SI

SI

SI

SI

SI

SI

NO

NO

NO

NO

NO

NO

 Fig.11. Flow chart angle complementation

V. CUMULATIVE ERROR

An application of trigonometric modules is shown in

the implementation of the equation systems (3) and (4).

Both equations use the implemented trigonometric

functions and are mutually dependent. The calculated

data will be feedback to the system. The original error

increases while it is multiplied across a number of

cycles. This is known as a cumulative error [5]. This

error will be contrasted with the error from a computer

numerical calculation system, in this case the MATLAB

mathematical computing software.

1 0 1 0 2(1) () () () ()z k cos a t z k sin a t z k (4)

2 0 1 0 2(1) () () () ()z k sin a t z k cos a t z k (5)

A. Implementing Equations (4) and (5)

To successfully implement the above equation

systems, we developed a hardware array to calculate

these functions [10].

The elements of the functions (4) and (5) are separated

into sub-functions, which are implemented

individually.

(1) cos() sin() ()

(1) sin()cos() ()

k k

k k

 (6)

Where: 0a t

Seen as a hierarchical arrangement of arithmetic

modules, the functions (6) can be seen as the block

diagram of Figure 12.

1) DELTA Module: the DELTA module is developed

as a set of three sub-modules: GAMMA, ALPHA and

BETA. The results of calculations made by ALPHA and

BETA are sent out to two records, RZ1 and RZ2.

2) GAMMA Module: The GAMMA module receives

the entry values from the input buses a (10 bits) and

0t (4 bits), delivering the result of the multiplication in a

14-bit format, 1 sign bit, 3 bits for the entire number and

10 bits for the fractional number.

3) ALPHA and BETA Modules: ALPHA and BETA

modules calculate values for the 1z and 2z outputs

respectively.

Fig.12. Delta Module Overview.

B. Results

The result shows how the initial error increases, as it

gets feedback into the system with each iteration.

Figure 13 shows in thick lines how the graph of the

device’s response separates from the Matlab’s response

graphs in fine line (ideal).

After 1000 iterations, the plotted functions provided

by the developed system, increasingly move away from

the optimal results.

0 200 400 600 800
-3

-2

-1

0

1

2

3

k
z
(k

)

ideal (z1)

ideal (z2)

module response (z1)

module response (z2)

Fig. 13. Accumulated error.

VI. STEADY STATE ERROR

The test of steady-state error to implement is to take an

initial value of sine / cosine, multiply it and feed it back

into the system, monitoring its response. Unlike the

previous test, here a new trigonometric function of the

task is calculated in each cycle. The goal is to start with

a given value, from which the system reaches a “stable”

condition, i.e. to obtain a value of arc t which provides a

result which when multiplied by a constant α, results

again in the value of arc t, and when this state is

reached, we measure the error in the output value [6].

The starting value is sin(10º) , which, after a defined

number of iterations multiplied by a value of 128,

becomes stable. The value α =128 was chosen because it

provides a "multiplication" based on a shift register,

reducing the error.

Thus, the equation that determines the operation of this

system is given by:

(1) (128· ())z k sin z k (7)

Where k ϵ R , k = 1,2,3,4 …n

A. Results

The resulting error in steady state for the trigonometric

module is 5.58% which is much larger than the error in

the ideal system.

Figure 14 shows the response from the ideal system

(fine) versus the implemented system (dash).

Table I shows the number of iterations needed to reach

the rise time Tr, the time required for z(k) signal to

change to a specified value, and settling time Ts, is the

time elapsed at which the module output z(k) has

entered and remained within a specified error band.

In the implemented system, Tr takes 23 elapsed cycles

(k) and Ts is 126 k-cycles. For the ideal system, Tr takes

4 elapsed cycles (k) and Ts is 141 k-cycles

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

z
(k

)

ideal steady state response

module steady state response

Fig.14. Steady State Error

Even if the accumulated error increases as the system

is fed back, pulling the system from the ideal response

function, the computation time for the functions is much

smaller in the FPGA (on the order of 30ns in the worst

case) than in the numerical computation software Matlab

(18.865 s in the best case observed), in an i5M480

2.67Ghz processor with 6GB memory computer system.

TABLE I
RESULTS FOR STEADY TIME ANALYSIS

Parameter Elapsed cycles

Matlab FPGA (Virtex 4)

Rise time (Tr) 4 23

Settling time (Ts) 141 126

VII. CONCLUSIONS

In the present work, modules developed for

trigonometric functions implemented present time

execution advantages building a matrix-value, also an

efficient utilization in reconfigurable FPGA devices.

Considering these module’s characteristics, we could

use them to solve some algorithms that involve

trigonometric sine and cosine functions in real time.

ACKNOWLEDGMENT

We thank the economic support program PROMEP of

the Secretariat of Public Education of México (SEP).

REFERENCES

[1] H. Ajorloo, H. Ebrahimi. “Optimizing Pipelines of
Trigonometric Functions for FPGAs”. IEEE 1-4244-1190-4 Jul.

2007.

[2] D. E. Joyce. (1997). Trigonometric Functions: Arbitrary
angles and the unit circle. [Online]. Available:

http://www.clarku.edu/~djoyce/trig/ functions.html

[3] R. N. Auffman, V. C. Barker. Collage Algebra and
Trigonometry, 7th ed., Ed. USA: Houghton Mifflin Company,

2008.

[4] (2010), Xilinx In-Depth Tutorial, Xilinx Home Page.
[Online]. Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilin

x12_1/ise_tutorial_ug695.pdf
[5] C. Pozrikidis. Fluid Dynamics: Theory, Computation, and

Numerical Simulation. Springer, 2009.

[6] K. Ogata. Discrete Time Control Systems, 2nd ed., Ed.
México: Prentice Hall.

[7] Amruta, G.; Yogita, P.; Puja, P.; Sriniwas Shastry, P.V.; ,

"Low latency and high accuracy archtectures of cordic algorithm
for cosine calculation on FPGA," Electronics, Circuits and

Systems, 2008. ICECS 2008. 15th IEEE International Conference

on , vol., no., pp.478-481, Aug, 2008.
[8] Ghosh, A.; Paul, S.; Bhunia, S.; , "Energy-Efficient

Application Mapping in FPGA through Computation in

Embedded Memory Blocks," VLSI Design (VLSID), 2012 25th

International Conference on , vol., no., pp.424-429, 7-11 Jan.

2012.

[9] Xie Baozhong; Chen Tiequn; , "Sine wave algorithm based
on 2nd offset and its implementation in FPGA," Electronic

Measurement & Instruments (ICEMI), 2011 10th International
Conference on , vol.3, no., pp.173-176, 16-19 Aug. 2011.

[10] J.-M. Muller, Elementary Functions, Algorithms and

Implementation, 2nd ed. Birkh¨auser, 2006.
[11] Bhuria, S.; Muralidhar, P.; , "FPGA implementation of sine

and cosine value generators using Cordic Algorithm for Satellite

Attitude Determination and calculators," Power, Control and
Embedded Systems (ICPCES), 2010 International Conference on

, vol., no., pp.1-5, Dec., 2010.

