
 

 

Abstract— Trigonometric functions are used to solve 

several computing problems. The algorithms that 

determine these functions require a good precision and 

accuracy for these systems, and it is also necessary to have 

shorter response times and smaller latencies. 

This paper proposes a methodology for trigonometric 

functions implementation in reconfigurable FPGA devices, 

using preloaded data tables in ROM memory blocks on the 

device’s embedded memory. 

The developed modules can be handled as independent 

modules and can reconfigure precision characteristics 

through firmware upgrades. 

 

Keywords—Trigonometric function, FPGA, Memory 

blocks. 

I. INTRODUCTION 

mong the several tasks of computers, one 

example is processing data information for 

calculating mathematical functions.  It has been 

observed in some surveys [1] that dedicated hardware 

and parallelized modules in FPGA devices can show 

better development for these tasks. 

 

Systems that calculate trigonometric mathematical 

functions consider some characteristics, such as 

precision and range in order to present desired results. 

The circuit interconnections increase and the utilization 

area on the FPGA is determined by these 

characteristics[7]. 

II. IMPLEMENTATION 

Implemented functions are the sinusoidal functions, 

where sine and cosine functions have a mathematical 

relation. The cosine function is also a sine function with 

a phase-shift of 90 degrees. Because of this relation and 

using the same methodology, both developed modules 

have a similar construction. 

 

The methodology followed to determine sine and 

cosine trigonometric functions is related to pseudo-

operations using preloaded data tables in ROM memory 

blocks on the FPGA device’s embedded memory [8]. 

Some purposes are to reduce maximum delay time and 

data-flow latency and simplify implemented algorithms 

for required results [9],[11]. 
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Building a value-matrix, where the values are 

calculated using algorithms that involve sine and cosine 

trigonometric modules are developed, and the goal is to 

estimate speed and precision for continuous operation.  

A. Arithmetic Module Description 

Each arithmetic module performs the calculation of 

two functions (sine and cosine).  The result is obtained 

from a pre-loaded table, located in an embedded ROM 

memory module available in the FPGA device (Virtex4, 

model XC4vlx15-12sf363). The “result” from the 

operation is selected from the table through a process 

that converts the input angle value into a memory 

address. 

B. Black Box Description 

The desired specifications for the device lead to the 

following design, seen as a black box device (Fig. 1). 
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Fig. 1. Black Box Diagram for the Trigonometric Module. 

C. Ports  

 Data: 18-bits input bus, seen Figure 2. 

 Reset: Reset input signal. 

 Clk: Clock input signal. 

 Sin/cos: Input select sine or cosine function. 

  Output: 18-bits output bus that will show the 

result of a cosine/sine operation over a given angle, 

seen Figure 3. 

 

 
Fig. 2 Input Bus array for the Trigonometric Module. 

 
Fig. 3 Output Bus array for the Trigonometric Module. 
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D. Functional Description 

According to the required specifications, the following 

operating characteristics will be developed: 

When data is placed in the data bus device (data) 

representing a certain degree, it is accepted as a signed 

number in a two complement format, with a precision of 

0.05 °, the output port (output) output will show the 

value of the trigonometric function, stored in an 

embedded memory address. This output value 

corresponds to the angle of entry. 

E. Block Diagram 

The method chosen to develop the device consists of 

developing 3 individual modules that will be contained 

in a top-level module. 

Figure 4 shows the functional blocks of the 

trigonometric module. The Complement/Locator block 

receives a value degree and the two complement is done 

if it is a negative degree. This block is also needed to 

locate the memory address where the function value was 

stored. The ROM memory is an embedded memory 

created with the IPCore Generator tool. Due to angle 

precision, memory space grows when a better precision 

for the arithmetic module is needed.  

The supplement block receives the sign, entire and 

“douta” signals and produces final module response 

output for the trigonometric module.  

 

 

Fig. 4 Block diagram for the Trigonometric Module. 

III. TRIGONOMETRIC FUNCTIONS 

Figure 5 shows the unit circle with radio r, whose 

center is at the origin of x and y axes of an orthogonal 

system.  

The sine of a real number t, where | t | is the length of 

the arc shown, is given by the magnitude of a or the 

coordinate of the point P1,  while the cosine of t is given 

by the magnitude of b or the x coordinate of the point P1 

[2]. 

t being the arc of the unit circle shown, the range of 

values that it may acquire is between 0° and 360°. 

 

As shown, the values of the magnitudes for the sine 

and cosine will always be between -1 and 1. 
 

 
Fig.5. Unitary Circle. 

A. Sine and Cosine Functions 

The features for the development of the module that 

calculates the function ( )sin t  are as follows: 

 

 Odd Function:  

                  )()( tsentsen    (1)  

 Maximum: 90º (1) 

 Minimum: 270º (-1) 

 
The features for the development of the module that 

calculates the function cos(t )  are as follows: 

 Even Function:  

                 )cos()cos( tt    (2)  

 Maximum: 0º, 360º (1) 

 Minimum: 180º (-1) 

 

B.  Relationship between Sine and Cosine 

Functions 

To calculate the values of the cosine function, we use 

this trigonometric equivalence: 

 

cos( ) sin( 90º )t t     (3) 

 

 

Fig.6. Cosine and Sine functions and its correspondence. 

For more information about trigonometric functions, 

please refer to [3]. 

IV. GENERAL OPERATION 

To develop the desired circuit, the chosen method 

consists of avoiding the arithmetic of trigonometric 

functions. To achieve this goal, we used a series of 

values, preloaded into ROM memory modules. We will 

use the memory modules available in the FPGA (Virtex-

4)[3]. These modules will receive the value of the arc t 

and based on this number the system will access a 

memory locality and its value will be presented at the 

output port.  



 

A. Trigonometric Functions Calculation Method 

In order to reduce the size of the memory used, instead 

of a block of rows with values for every possible input 

value t, we use the properties of symmetry and 

frequency of functions (1), (2) y (3).  

Both functions are periodic, so there is no point in 

calculating values beyond 360ºt  . The sine function 

is odd, so it is not necessary to allocate results for 

negative values of t. We simply change the sign of the 

output that would be obtained for the same positive 

value of t. The cosine function is even, so the results 

relay only the magnitude of t and not on its sign. By 

having an input accuracy of 0.05 °, twenty memory 

addresses are needed to calculate the values of 

trigonometric function for every input degree. Even 

calculating only positive values from 0 to 360 ° for t, the 

device will need an embedded ROM memory space of 

7200 block addresses.  

To calculate any angle, it is sufficient to know the 

values of the functions for the first 90° and then convert 

the requested angle to its complementary or 

supplementary angle. Thus, the amount of used ROM 

memory blocks is reduced to 1800 instead of 7200. To 

calculate the values of the cosine function, we will use 

the same equivalence trigonometric of (3). 

B. Complementation Methodology 

The methodology used for the complementation 

operated on the signals representing the angle is as 

follows: 

• If the angle is negative, with a two complement, it is 

complemented to its positive value.  

• The input angle in positive form is multiplied by 

twenty, because it is the memory space needed to 

calculate trigonometric function values for every degree. 

• If the angle is greater than 90 º, the system proceeds 

to get its complementary / supplementary angle below 

90 º. 

• This angle is converted to a value that represents a 

memory location into the ROM memory in the FPGA. 

• For the Cosine module the entry angle will add up to 

90 º. 

 

C. Sine and Cosine module description 

 

The SINE module shown in Figure 7 and the COSINE 

module shown in Figure 8 calculate sine and cosine 

functions. Both circuits have a strong mathematical 

relationship, as they have a very similar structural design 

described in (3). 

 

SINE

clk

rst

data

output

18

18

 

Fig.7. Sine module. 

 

Shown in figure 2 and 3, these modules present an 18-

bit format: 1 bit for sing, 9 bits for entire data and 8 bits 

for fractional data. The output is presented an 18-bit 

format as well: 1 bit for sing, 1 bit for entire data and 16 

bits for fractional data. 
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Fig.8. Cosine module. 

Figures 9 and 10 show implemented blocks for sine 

and cosine functions, the most important difference 

between them is the COMPL ANGULO block, that 

allows the COSINE module to shift 90 degrees from the 

values for the SINE module, as mentioned in (3).  

 

The sign signal at output port for the SINE module 

depends on an input data angle sign. If the input angle is 

negative, with a two complement format, this angle is 

complemented in COMPL block in order to get a 

positive value. 

For that reason, if the input angle is negative, the entire 

and fractional data are complemented in this block. 

The SUM block determines the addresses in MEM 

memory, in which one is saved sine function values for 

0 to 90 degrees, and is used to determinate the output 

value for sine or cosine modules at the output port.  
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Fig.9. Sine/Cosine module. Part A. 
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Fig.10. Sine/Cosine module. Part B. 

Angle complementation is described as the way to find 

sine function output values for an entire cycle using only 

the first quadrant values saved in the embedded memory 

in the FPGA.  

 

Part of an angle complementation code in a hardware 

description language VHDL is shown: 



--If angle = 90º  

   if (grad_x20 = "00011100001000" or 

grad_x20 = "10001100101000") then 

 complemento <= "00000000000000"; 

 

-- If angle = 270º  

   elsif (grad_x20 = "01010100011000" or 

grad_x20= "10101000110000") then 

 complemento <= "00000000000000"; 

 

-- If angle <  90º   

   elsif (grad_x20 < "0011100001000") 

then 

 complemento <= grad_x20; 

 

-- If angle > 90º 

   elsif (grad_x20 > "00011100001000" 

and grad_x20 < "00111000010000") then 

complemento <= "00111000010000"- 

grad_x20; 

  

-- If angle >= 180º 

    elsif (grad_x20 >= "00111000010000" 

and grad_x20 < "01010100011000") then 

    complemento <= grad_x20 - 

"00111000010000"; 

  

-- If angle  > 270º  and < 360º 

    elsif (grad_x20 > "01010100011000" 

and grad_x20 < "01100000111000") then 

    complemento <= "01110000100000" - 

grad_x20; 

  

-- If angle  >= 360º  

    elsif (grad_x20 >= "01110000100000") 

then 

    complemento <= grad_x20 - 

"01110000100000"; 

  

    end if; 

end process; 

 

signo <= signo_s(1) xor signo_s(0); 

direccion_c <= complemento (entero+1 

downto 0); 

 

If the angle is equal to 90º, the entire output data is 

active in “1” and the value temporal register is in “0”, it 

is the register that addresses memory ROM.   

If the angle is equal to 270º, the entire output data is 

active in “1”, the sign bit is in “1” and the value 

temporal register is in “0”. If there are other angles, the 

entire output data is in “0” and the process continues 

with angle complementation. 

If the angle is less than 90º, the value temporal register 

addresses memory ROM and the sign output data is in 

“0”. In the second quadrant, if the angle is greater than 

90º and less than 180º, the value temporal register is 

180º minus the angle value sign of the output data is in 

“0”.  

If the angle is greater than 180º and less than 270º, the 

value temporal register is angle value minus 180º, and 

the sign output data is in “1”. It is the third quadrant. 

If the angle is greater than 270º and less than 360º, the 

value temporal register is 360º minus angle value, and 

the sign output data is in “1”. It is the fourth quadrant. 

If the angle is equal or greater than 360º, the value 

temporal register is angle value minus 360º, the sign 

output data depends on the value of the register. It is the 

first quadrant again. 

At the end, the output bit sign receives a value that 

depends on the original bit sign and quadrants.  

Figure 11 describes a Flow Chart of the angle 

complementation block. 
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 Fig.11. Flow chart angle complementation 

V. CUMULATIVE ERROR 

An application of trigonometric modules is shown in 

the implementation of the equation systems (3) and (4). 

Both equations use the implemented trigonometric 

functions and are mutually dependent. The calculated 

data will be feedback to the system. The original error 



 

increases while it is multiplied across a number of 

cycles. This is known as a cumulative error [5]. This 

error will be contrasted with the error from a computer 

numerical calculation system, in this case the MATLAB 

mathematical computing software. 

 

1 0 1 0 2( 1) ( ) ( ) ( ) ( )z k cos a t z k sin a t z k      (4)  

2 0 1 0 2( 1) ( ) ( ) ( ) ( )z k sin a t z k cos a t z k       (5)                                                         

 

A. Implementing Equations (4) and (5) 

To successfully implement the above equation 

systems, we developed a hardware array to calculate 

these functions [10]. 

The elements of the functions (4) and (5) are separated 

into sub-functions, which are implemented 

individually.  
 

( 1) cos( ) sin( ) ( )

( 1) sin( )cos( ) ( )

k k

k k

   


   

     
       

      
 (6) 

Where: 0a t    

 

Seen as a hierarchical arrangement of arithmetic 

modules, the functions (6) can be seen as the block 

diagram of Figure 12. 

1)  DELTA Module:  the DELTA module is developed 

as a set of three sub-modules: GAMMA, ALPHA and 

BETA. The results of calculations made by ALPHA and 

BETA are sent out to two records, RZ1 and RZ2. 

2)  GAMMA Module: The GAMMA module receives 

the entry values from the input buses a  (10 bits) and 

0t (4 bits), delivering the result of the multiplication in a 

14-bit format, 1 sign bit, 3 bits for the entire number and 

10 bits for the fractional number.  

3)   ALPHA and BETA Modules: ALPHA and BETA 

modules calculate values for the 1z  and 2z outputs 

respectively. 

 

 

Fig.12. Delta Module Overview. 

B. Results 

The result shows how the initial error increases, as it 

gets feedback into the system with each iteration. 

Figure 13 shows in thick lines how the graph of the 

device’s response separates from the Matlab’s response 

graphs in fine line (ideal).  

After 1000 iterations, the plotted functions provided 

by the developed system, increasingly move away from 

the optimal results. 
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Fig. 13. Accumulated error. 

VI. STEADY STATE ERROR 

The test of steady-state error to implement is to take an 

initial value of sine / cosine, multiply it and feed it back 

into the system, monitoring its response. Unlike the 

previous test, here a new trigonometric function of the 

task is calculated in each cycle. The goal is to start with 

a given value, from which the system reaches a “stable” 

condition, i.e. to obtain a value of arc t which provides a 

result which when multiplied by a constant α, results 

again in the value of arc t, and when this state is 

reached, we measure the error in the output value [6].  

 

The starting value is sin(10º ) , which, after a defined 

number of iterations multiplied by a value of 128, 

becomes stable. The value α =128 was chosen because it 

provides a "multiplication" based on a shift register, 

reducing the error. 

 

Thus, the equation that determines the operation of this 

system is given by: 

  

( 1) (128· ( ))z k sin z k    (7) 

 

Where k ϵ R , k = 1,2,3,4 …n 

A. Results 

The resulting error in steady state for the trigonometric 

module is 5.58% which is much larger than the error in 

the ideal system. 

Figure 14 shows the response from the ideal system 

(fine) versus the implemented system (dash). 

 

Table I shows the number of iterations needed to reach 

the rise time Tr, the time required for z(k) signal to 

change to a specified value,  and settling time Ts, is the 



time elapsed at which the module output z(k) has 

entered and remained within a specified error band.  

In the implemented system, Tr takes 23 elapsed cycles 

(k) and Ts is 126 k-cycles. For the ideal system, Tr takes 

4 elapsed cycles (k) and Ts is 141 k-cycles 
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Fig.14. Steady State Error 

 

Even if the accumulated error increases as the system 

is fed back, pulling the system from the ideal response 

function, the computation time for the functions is much 

smaller in the FPGA (on the order of 30ns in the worst 

case) than in the numerical computation software Matlab 

(18.865 s in the best case observed), in an i5M480 

2.67Ghz processor with 6GB memory computer system. 

 

TABLE I 
RESULTS FOR STEADY TIME ANALYSIS 

Parameter Elapsed cycles 

Matlab FPGA (Virtex 4) 

Rise time (Tr) 4 23 

Settling time (Ts) 141 126 

 

VII.    CONCLUSIONS 

In the present work, modules developed for 

trigonometric functions implemented present time 

execution advantages building a matrix-value, also an 

efficient utilization in reconfigurable FPGA devices. 

Considering these module’s characteristics, we could 

use them to solve some algorithms that involve 

trigonometric sine and cosine functions in real time.    
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