
A Partition Model using Partial Reconfigurable
Hardware for ChipCflow Project

Francisco Souza Junior1 Jorge Luiz e Silva2

Resumen— In this paper, the partition model, that
was designed in a field programmable gate array
(FPGA) with partial reconfiguration, as a prototype
of a static dataflow architecture is discussed. The
ChipCflow Project using a dataflow graph with par-
tition of the graph in a partial reconfigurable system
shows the potential for high computation rates. The
model of partition was validated and results are pre-
sented to the end of this paper.

Palabras clave—Dataflow graph partition, Algorithm
Acceleration, Partial Reconfiguration, dataflow archi-
tecture.

I. Introduction

WI th the advent of reconfigurable computing,
basically using a Field Programmable Gate

Array(FPGA), researchers are trying to explore the
maximum capacities of these devices, which are: flex-
ibility, parallelism, optimization for power, security,
real time applications and partial reconfiguration [5],
[15].
Because of the complexity of the applications and

the large possibilities to develop systems using FP-
GAs, many applications to converts algorithm into
these devices associated with a General Purpose Pro-
cessor (GPP) using high level language like C and
Java is one of the challenges for researchers nowa-
days, especially for accelerating algorithms [11], [12].
Another problem is the size of the system where

the hardware should be optimized to execute the ap-
plications.
The main aim of this project was to accelerate the

algorithms witch convert parts of programs written
in C language into a dataflow model using a par-
tition model implemented in a FPGA with partial
reconfiguration.
The paper is organized as follows. Related works

is described in the section II. The Dataflow Graph
Model is discussed in the section III. In the section
IV are presented the Model of Partition in a Partial
Reconfiguration. Section V shows the results of im-
plementations. Section VI conclude the paper and
presents future works.

II. Related Works

The dataflow graph model and its architecture was
first researched in the 1970s and was discontinued in
the 1990s [1], [4], [9], [10]. Nowadays, it is a topic of
research once more, mainly because of the advance of
technology, particulary with the advent of the FPGA
[2], [9], [15].

1Department of Computer Systems, University of Sao Paulo,
e-mail: fsjunior@icmc.usp

2Department of Computer Systems, University of Sao Paulo,
e-mail: jsilva@icmc.usp.br

Because the dataflow model has an implicit par-
allelism and the FPGA is composed by parallel cir-
cuits, the dataflow model applied to a FPGA has the
perfect combination to execute applications which
also have parallelism in their execution [9]. However,
as applications become more complex, software de-
velopment is only possible using high level language
such as C or Java [3] although only parts of the pro-
gram will be executed directly into the hardware.
Thus, several tool have been developed to convert C
into a hardware using VHDL language [6], [7], [8].

In order to analyze the data dependence, many
of these systems generate an intermediate dataflow
graph for pipeline instructions. The optimizations,
using several techniques such as loop unrolling, are
concluded and finally a reconfigurable hardware us-
ing the VHDL language is generated. The hardware
generated using these tools consists of coarse grain
elements or assembler instructions for a customized
processor as Picoblase or Nios from Xilinx and Altera
respectively [16].

Another important resource nowadays is Partial
reconfiguration that have been studied for researches
since 1990s basically proposing a solution for limita-
tion area into the FPGA [5], [18].

In our approach, a fine grain instruction using
VHDL to implement a dynamic dataflow architec-
ture, consisting of various nodes of processing ele-
ments and arcs to connect those nodes in a graph,
with tags for the data, using partition for the graph-
ics as a solution for the hardware limitation is used
to accelerate algorithms.

III. The Dataflow Graph Model

In the Asynchronous Dataflow Graph project de-
veloped by Teifel [15], the asynchronous system
is a collection of concurrent hardware processes
that communicate with each other through message-
passing channels. These messages consist of atomic
data items called tokens. Each process can send and
receive tokens to and from its environment through
communication ports. In the Teifel project, asyn-
chronous pipelines are constructed by connecting
these ports to each other using channels, where each
channel is allowed only one sender and one receiver.
Since there is no clock in an asynchronous design,
processes use handshake protocols to send and re-
ceive tokens via channels.

In Figure 1 Teifel describes an equation converted
into a dataflow graph in three different situations:
(a) a pure dataflow graph, (b) a token-based asyn-
chronous dataflow pipeline and (c) a clocked dataflow
pipeline.



Fig. 1. Computation of yn=yn-1+c(a+b):(a) pure dataflow
graph, (b) token-based asynchronous dataflow pipeline
(filled circles indicate tokens, empty circles indicate an
absence of tokens), and (c) clocked dataflow pipeline.

In our project, a collection of concurrent hardware
processes that communicate with each other, but us-
ing a parallel bus with bits for data and bits to con-
trol the communication process in a synchronous sys-
tem of communication as described in part (c) of the
Figure 1, is also used.

A. Dataflow Computations

In the dataflow graph for ChipCflow Project, a tra-
ditional dataflow model described in the literature,
where a node is a processing element and an arc is
the connection between two elements, is used [1], [2],
[4], [9], [10]. A data bus and a control bus to execute
the communication between the operators were im-
plemented. The static dataflow graph model, where
only one item of data can be in an arch was devel-
oped.

In Figure 2, a basic operator and its data buses
and control buses for communication are described.
The signal data a, b and z in Figure 2 are 16-bit data
traveling through the parallel buses. The signals stra,
strb, strz, acka, ackb and ackz are 1-bit control data
to control communication between operators.

Fig. 2. The basic operator with its data buses and control
buses.

The communication process between operators is
described in Figure 3. As can be clearly seen in the
figure, a sender operator and a receiver operator have
two input data buses a and b, one output data bus z
and its respective control signals stra, strb, strz, acka,
ackb and ackz. Each of input data bus and output
data bus is connected to a register to store a receiving
item of data and to store a sending item of data,
represented by rectangles with rounded edges a, b
and z in the figure. The output data bus z from the
sender operator is connected to input data bus a from
the receiver operator, the output control signal strz

from the sender operator is connected to the input
control signal stra from the receiver operator and the
input control signal ackz from the sender operator is
connected to the output control signal acka from the
receiver operator.

Fig. 3. The communication process: a) enabling the commu-
nication, b) sending an item of data, c) Acknowledging an
item of data.

A ”logic-0” in the signal ackz informs to the sender
operator that the receiver operator is ready to receive
data. A ”logic-1’ in the signal ackz informs to the
sender operator that the receiver operator is busy.
A ”logic-1” in the signal stra informs to the receiver
operator that an item of data is ready to be sent to
it from the sender operator. A ”logic-0’ in the signal
stra informs to the receiver operator that the sender
does not have an item of data to be sent to it.

To initiate the communication process, an enable
signal with a ”logic-0” to the ackz connected to the
sender, is set, Figure 3a. When the receiver operator
is ready to receive data, a ”logic-1” in the stra strobes
an item of data to the input data bus a in the receiver
operator, Figure 3b. Consequently, a ”logic-0” in
the acka acknowledges that the item of data a was
received, Figure 3c.

B. The Dataflow Operators

The dataflow operators were the traditional oper-
ators described by Veen in [10], which are: copy, non
deterministic merge, deterministic merge, branch,
conditional and primitive operators (add, sub, mul,
div, and, or, not, etc.).

In order to execute the computation of an operator
it is necessary that an item of data is presented in
all its input buses of data. In Figure 4 operators are
described where filled circles indicate items of data
and empty circles show an absence of items of data
and the situation of the operator before computation
and after computation [15].

Fig. 4. The operators.



The functional execution of dataflow operators is
described below:

1. Copy: This dataflow node duplicates an item
of data to two receiver operators. It receives an
item of data in its input data bus and copies the
item of data to two output data buses.

2. Primitive: This dataflow node receives two item
of data in its input data buses, computes the
primitive operation with these two items of data
and generates the result sending it to the output
data bus. Operators such as add, sub, multiply,
divide, and, or, not, if, etc., are implemented in
the same way.

3. Dmerge: This dataflow node performs a two-
way controlled data merge and allows an item
of data to be conditionally read in input data
buses. It receives a TRUE/FALSE item of data
to decide what input data a or b respectively to
send to the output data z

4. NDmerg: This dataflow node performs a two-
way not controlled data merge and allows an
item of data to be read on input data buses. The
first data to arrive into the Ndmerge operator
from input a or b is sent to the output data z.

5. Branch: This dataflow node performs a two-
way controlled data branch and allows the item
of data to be conditionally sent on to two differ-
ent output buses. It receives a control TRUE/-
FALSE item of data to decide what output data
t or f respectively to transfer the input data a.

IV. The Model of Partition in a Partial
Reconfiguration

For complex application where the hardware could
be prohibitive, depends on the size of the hardware,
a partial reconfiguration could be a solution [5], [18].

In the ChipCflow Project, that is based on a
dataflow architecture, several operators are con-
nected by arcs to implement the application. De-
pends on the applications, the complete dataflow
graph could not be supported by the bigger FPGA
existing. In this case, a partial reconfiguration to
implement the system could be used [13] [14].

To implement the partial reconfiguration for the
dataflow graph, instances as a subgraph of the origi-
nal dataflow graph was defined. The model of parti-
tion for ChipCflow Project consists of those instance
for implementation.

In the Figure 5, an example of the partition is
described, where two instances of the dataflow sub-
graph are defined as a partition. This partition can
be partial reconfigured in the different area of the
FPGA and in different moments of the execution.

As can be clearly seen in the Figure 5, a new tag
area is an operator that generate new tag for each
data coming into the instances. The first data gen-
erated for the new tag area operator occupy the in-
stance 1 located in the left side of the Figure 5, that
was defined as a partition. The instance 2 located
in the right side of the Figure 5 is activated when a
second data is generated for the new tag area opera-

Fig. 5. Two Instances of the same Partition.

tor and then a partial reconfiguration to receive the
data for instance 2 is generated, and so on.

A. Partial Reconfiguration into a FPGA

There are few FPGAs that support partial recon-
figuration. The main company to produce this kind
of device is Xilinx with the first one FPGA XC6200
followed for Virtex II, Virtex II pro, Virtex 4, Virtex
5, Virtex 6 and Virtex 7 all from Xilinx [17]. The
Xilinx Virtex FPGA was the platform considered in
this paper.

In Figure 6 an basic partial reconfiguration archi-
tecture into a FPGA is described. As can be clearly
seen in figure, the FPGA is divided in PRR (Partially
Reconfigurable Region) with limited reconfiguration
area, associated with a static region and bus macros
that are used to communicate the static region with
the PRRs [17].

Fig. 6. Basic Partial Reconfigurable Architecture for a FPGA.

To reconfigure a specific PRR, a bitstream with
respective address for that PRR is used. The other
parts of the FPGA still running.

As the PRR has a limited reconfiguration area, the
partition of the dataflow graph, with the maximum
quantity of operators, was defined that should be
partitioned into a PRR. The partition architecture,
its limits and the implementation results are describe
in the next sections.

B. The Architecture for Partition

The basic organization for the partition proposed
in this paper is described in the Figure 7. As can
be clearly seen in the figure, there are various PRRs,
a data bus distributed by the PRRs, a control bus



with a schedule that is used to control the access of
PRRs to the data bus, finally a input output block
to control input and output data from the FPGA.

Fig. 7. The basic Organization of Partition.

Fig. 8. A Detailed Architecture of the Partition.

In Figure 8 a detailed architecture of the partition
is described where the same example of partition de-
scribed in Figure 5 is used. As can be clearly seen
in the Figure 8, there is a Bus access and Control
signals block that control the access of partition to
the data bus. This block is defined in static region
of the FPGA. The instances, defined into the PRRs,
are connected with this block through bus macros
using the Input communicator block and the Output
communicator block. When one partition send a re-
quest for schedule to send data to the data bus, the
schedule commands the steps to execute that requi-
sition.

In Figure 9 a protocol used by schedule to control
the communications between partitions is described.
As can be clearly seen in the figure, the field Syn-
chronous is used to informs a partition that there is
a data coming into it. The field Activation, Iteration
and Nesting are parts of the data traveling through
the dataflow graph. The field Partition and Arc are
used for schedule to control the communication.

Fig. 9. The Protocol Frame.

V. Experimental Results

The Fibonacci Algorithm described in the Algo-
rithm 1 was implemented using a (xv2p30-7ff896)
Virtex II FPGA from Xilinx and synthesized in ISE
9.1. The dataflow graph for Fibonacci algorithm is
described in the Figure 10.

Algorithm 1 Calculate Fibonacci

a ⇐ 0
b ⇐ 1
t ⇐ 0
for i = 0 to n− 1 do
t ⇐ a+ b
a ⇐ b
b ⇐ t

end for

As can be clearly seen in Figure 10 there are two
different areas in the figure. The first one is located
in the left side on figure, before the new tag area box.
This area is used just to initialize the variables for
the Fibonacci sequence. The second area is the other
part of the figure but after the new tag area box and
it is used just to control the index i and the generator
for the Fibonacci sequence.

Fig. 10. Dataflow Graph for Fibonacci Algorithm.

The main aspect to define the partition for the Fi-
bonacci dataflow graph was the limitation area for
PRRs. In the Figure 11 the first partition, to be
configured in the static region into the FPGA is de-



scribed. In this project, to validate the partition
model, just two partitions were defined.

As can be clearly seen in Figure 11 the signals n
and a are inputs of the partition p1 and the signals
i(p2), n(p2), b(p2) and a(p2) are outputs of the par-
tition p1 and input of the partition p2. A bus macro
is used for the signal i(p2), n(p2) b(p2) and a(p2) to
communicate with the partition p2.

Fig. 11. The first partition for Fibonacci Algorithm.

In the Figure 12 the second partition is described.
In this case, supposing to implement Fibonacci with
n=3, two activations for partition p2 were defined.
As can be clearly seen in Figure 12 the signals i, n,
b and a are inputs of the partition p2. The signals
i(p2), n(p2), b(p2), a(p2), a(p1) and b(p2) are out-
puts of the partition p2 and input of the second ac-
tivation of the partition p2 and just one signal a(p1)
is an input for the partition p1. For all the signals,
to communicate with the partition p1, the bus macro
was used and another activation for partition p2 was
generated.

A logic representation of the partitions into the
FPGA is described in Figure 13. As can be clearly
seen in the figure, the part represented for the green
color is the partition p1, the part represented for the
blue color is the first activation for partition p2 and
the part represented for the red color is the second
activation for the partition p2.

To compare the implementation of the partition
model with a general purpose processor, the Fi-
bonacci algorithm was executed in C using a Dell
Vostro 1310 computer with Intel Core 2 Duo T5670
- 1.8Ghz inside. The MingW32 compiler was used
[19] and the results was compared with the model of
partition implemented.

Two methods were used to define the comparisons.
The method 1 consists of use the Windows API with
QueryPerformanceCounter [20] and the method 2
consists of use Assembly rdtsc from Intel Corpora-
tions [21]. In Figure 14 the results of comparison is

Fig. 12. The second partition for Fibonacci Algorithm.

Fig. 13. The Color Representation for the Partitions.

described.

As can be clearly seen in Figure 14 the implemen-
tation generated based on Partition has less speed
than the two implementation using C code. Com-
ments is described as followed.

VI. Conclusion

The Model of Partition has less speed than the C
code using method 1 and method 2. However, the
main aim in this project was to validate the imple-
mentation model likely to convert algorithms into the
dataflow graph and into a VHDL using different par-
titions. Taking this into account, the partition model
become one more solution for hardware capacity in
FPGA. The benchmark used in this paper basically
perform operation using vector, but it is very im-
portant to explore the maximum parallelism of the
dataflow graph using real parallel applications. Fu-
ture work would be to develop a module to convert
C directly into a VHDL, associated with the FPGA
and to implement a dynamic dataflow model using



Fig. 14. The Speedup of C code versus Partition implemen-
tation.

the partition model to obtain a better performance
than the results described in this paper.

Referencias
[1] Arvind (2005) Dataflow: Passing the token, The 32th

Annual International Symposium on Computer Archi-
tecture (ISCA Keynote), ACM, Madison, USA, pp. 1-42.

[2] Cappelli, Andrea and Lodi, Andrea and Mucci, Claudio
and Toma, Mario and Campi, Fabio. (2004) A Dataflow
Control Unit for C-to-Configurable Pipelines Compila-
tion Flow, IEEE Sumposium on Field-Programmable
Custom Computing Machines FCCM’04, IEEE, USA,
pp. 323–333.

[3] Cardoso, J., H. Neto (2003) Compilation for FPGA
Based Reconfigurable Hardware, IEEE Design Test of
Computers, IEEE, pp. 65–75.

[4] Dennis, Jack B. and Misunas, David P. (1974) A prelim-
inary architecture for a basic dataflow processor, Com-
puter Architecture News - SIGARCH’74, ACM, USA, pp.
126–132.

[5] Hauck, S. (2000) The Roles of FPGAs in Repro-
grammable Systems, Proceedings of the IEEE, IEEE, pp.
615-638.

[6] ImpulseC (2005) Impulse Accelerated Technologies, Inc-
ImpulseC From C software to FPGA hardware , Im-
pulseC.

[7] Spark (2004) User Manual for the SPARK Parallelizing
High-Level Synthesis Framework Version 1.1, Center for
Embedded Computer Systems.

[8] Suif (2006) The Stanford SUIF Compiler Group , Suif
compiler system.

[9] Swanson, S. and Schwerin, A. and Mercaldi, M. and Pe-
tersen, A. and Putnam, A. and Michelson, K. and Oskin,
M. and Eggers, S. J. (2007) The Wavescalar Architec-
ture, ACM Transactions on Computer Systems, ACM,
pp. 4:1-4:54.

[10] Veen, A. H. (1986) Dataflow Machine Architecture, ACM
Computing Surveys, ACM, pp. 365–396.

[11] Chen, Z. and Pittman, R. N. and Forin, A. (2010) Com-
bining multicore and reconfigurable instruction set ex-
tensions, Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable gate ar-
rays - FPGA’10, ACM, USA, pp. 33–36.

[12] Hefenbrock, D. and Oberg, J. and Thanh, N. T. N.
and Kastner, R. and Baden, S. B (2010) Accelerat-
ing Viola-Jones Face Detection to FPGA-Level Using
GPUst, 18th IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines,
ACM, USA, pp. 11–18.

[13] Junior, F. S and e Silva, J.L. and Sanches, L. and Astolfi,
V. (2010) Research and Partial analysis of overhead of a
partition model for a Partially Reconfigurable hardware
in a data-driven machine - chicflow Programmable Logic
Conference (SPL), IEEE, USA, pp.191–194.

[14] Silva, J.L. and Lopes, J. (2010) A dynamic dataflow ar-
chitecture using partial reconfigurable hardware as an op-
tion for multiple cores W. Trans. on Comp, WSEAS, v.9,
n.5, pp.429-444.

[15] Teifel, J. Rajit, M.(2004) An asynchronous dataflow
FPGA architecture, IEEE Transactions on Computers,
IEEE, pp. 1376–1392.

[16] Bobda, C. (2007) Introduction to Reconfigurable Com-
puting , Springer.

[17] Xilinx, (2011) Xilinx XST User Guide for Virtex-6,
Spartan-6, and 7 Series Devices, Xilinx.

[18] K. Papadimitriou, A. Dollas, S. Hauck. Performance of
Partial Reconfiguration in FPGA Systems: A Survey
and a Cost Model, ACM Transactions on Reconfigurable
Technology and Systems (TRETS), ACM, USA, to ap-
pear.

[19] Mingw (2009) Mingw.org, Mingw - minimalist gnu for
windows.

[20] Microsoft (2010) Queryperformancecounter function, Mi-
crosoft Corporation.

[21] Intel (1998) Using the rdtsc instruction for performance
monitoring, Intel Corporation.


