
Safety-Critical Platform Model Based on
Certification Standards

José Luis Gutiérrez1 , Jesper Berthing2 , David Fernández3 and Javier Dı́az4

Abstract— Nowadays, the necessity of developing
safety systems has led to the investigation of new tools
and methodologies to be added to the development
process of elements on which human being lives rely.
This goes from the improvement of the requirements
traceability to the system design automation. Mini-
mizing manual design and coding allow achieving this
goal and it is possible thanks to the utilization of high
level languages that allow capturing the intended be-
havior of the system. The final implementation can
be obtained by using proper synthesis/compiling tools
allowing the production of high reliability systems.
In this context we present a co-design methodology
based on the use of SystemC languages for the de-
velopment of safety critical systems. The utilization
of proper simulation tools and libraries joins onto a
co-design methodology that separates the design into
hardware and software elements at a later stage. This
makes possible systems verification towards reliability
before the final implementation process takes place,
giving rise to a reduction in the implementation costs
of safety systems.

Keywords—Certification, IEC 61508, Safety-Critical
System, Safe Channel, Diagnostics, Multi-core, Re-
dundancy.

I. Introduction

SY stemC R© [1] is a powerful programming lan-
guage specially designed for system modelling at

high level of abstraction but also capable of generat-
ing descriptions of components at Register Transfer
Level (RTL) [2]. It allows moving from the high-
est to the lowest level of abstraction based on de-
sign specifications [3]. This description language
has strongly emerged increasing its worldwide ac-
ceptance as the complexity of designs also increases,
because of the possibility of developing at different
abstraction level. SystemC is able to describe com-
ponents at functional level and, using an iterative ap-
proach, focus on a final detailed implementation by
the redefinition of these components. Thereby, Sys-
temC could be used from the description of a func-
tional model at a preliminary stage of development
to the final process of component implementation.
During next development stages, these components
could be specified as hardware (HW) or software
(SW) elements, applications, operating systems, or
even middleware libraries that can be instantiated.
These are very important features because modern
embedded systems tend to use SoC as a physical
platform. In particular, many reconfigurable hard-
ware devices and tools focused on this methodology

1Dpto. de Arquitectura y Tecnoloǵıa de Computadores,
Universidad de Granada, e-mail: jlgutierrez@atc.ugr.es.

2Danfoss Drives A/S, e-mail: jbe@danfoss.com.
3Dpto. de Arquitectura y Tecnoloǵıa de Computadores,

Universidad de Granada, e-mail: dfernandez@atc.ugr.es.
4Dpto. de Arquitectura y Tecnoloǵıa de Computadores,

Universidad de Granada, e-mail: jdiaz@atc.ugr.es.

[4,5,6,7]. Since SoCs design combines hardware and
software elements, the previous properties of Sys-
temC make this language a very representative tool
for embedded systems design. Moreover, there are
different third-party tools, such as Catapult C [8]
or Vivado [9], which can be used to synthetize RTL
code directly targeted to digital hardware as FPGAs.
By this, we would be able to describe at a very early
stage of the development of systems the benefits that
can be extracted from the SystemC description [10].

Thanks to these advantages of the development
methodology already described, the SystemC pro-
gramming language could be a good choice for the
development of critical systems. Critical systems
[11] are those in which an anomalous behavior could
cause or contribute to a failure resulting in a dra-
matic situation within different transport vehicles,
such as aircrafts, on which human being lives de-
pend. Critical systems can be grouped by safety crit-
ical and mixed-criticality systems, depending on the
grade of safety required by all the components that
are included in these systems. In addition, these sys-
tems must follow up different types of certification
standards in relation to the domain in which they
are applicable. Some of these standards are: avion-
ics, automotive and industry certification standards
[11,12,13]. SystemC allows describing the whole SoC
elements with a uniform language and using synthe-
sis and compilation tools to automatically generate
the final system implementation. The standard de-
sign flow requires that, after the system has been
modelled using a high level language, the software is
coded using typically C/C++ language, and the dig-
ital hardware is coded by the utilization of VHDL or
Verilog. This coding process is typically done man-
ually and therefore, it is prone to errors. Besides,
working with SystemC simplifies the manual writing
of code since there is just one and uniform required
language, reducing human errors and improving the
trazability of the requirements [2]. Both properties
are essential for improving safety and design proce-
dures of safety critical systems and, therefore, it has
motivated the choice of this language for critical sys-
tems specifications.

In addition to the previous improvements, one of
our objectives using SystemC as a library is to add to
a design the possibility to describe mixed-criticality
systems based on multicore systems using different
partitioning and isolation schemas for both critical
and non-critical tasks. This partitioning could be in
time or in space. The fact of working with mixed
systems brings the possibility of using commercially
available Off-The-Shelf (COTS) for all non-critical



functionalities of the system. One of the features of
time partitioning is the possibility of using virtual-
ization methods and tools to manage different shared
resources within a platform. Elements in a system
can be critical and non-critical (including cores),and
these elements are part of the systems’ space prob-
lem of partitioning and isolation, which is one of the
key points in mixed-criticality systems.

For a valid development process in this field, the
elements that form part of these systems should be
described as critical and non-critical elements, and
also as hardware and software, depending on the de-
scription and specification of the system. This fact
brings us to the co-design concept shown in the Fig.
2. This methodology is also applicable to SystemC
models because of the possibility of development at
the different abstraction levels that SystemC pro-
vides.

The rest of the paper is organized as follows. Co-
design methodology is described in section 2 of this
document. Section 3 presents the case study chosen
to illustrate the approach here presented. Section 4
presents some preliminary results and in section 5
we present the main conclusions and indications for
future work.

II. SystemC co-design methodology for
mixed-criticality systems

One of the goals using SystemC is the possibility
to introduce safety issues and isolation methods dur-
ing the co-design process at an early stage of design.
Unfortunately, this kind of methodology needs a va-
riety of accurate descriptions that are not available
in many cases. This lack of detailed characterization
can be extended to the COTS utilization domain.
As described before, SystemC allows modelling en-
tire systems, including software and hardware com-
ponents. In spite of the big amount of features and
advantages that SystemC includes in relation to time
behaviour, partitioning, timing, power issues, and so-
lutions oriented to the synthesizing of code for em-
bedded systems, this set of libraries does not include
any safety-critical API. Therefore, they can neither
explicitly provide nor even test any safety features
for the systems modelled by themselves.

For this reason, we have been working on the de-
velopment of additional libraries and processes based
on SystemC elements and components that provide
models with safety features. These component li-
braries include the design of safety channels, run-
time monitoring elements and functional require-
ments specification modules. This paper focuses on
our development of a safety-critical platform that in-
cludes a safety channel architecture 1oo2 described
on the certification standard IEC61508. There are
two different kinds of models depending on whether
the relevance of the model relies on the communica-
tion process among modules, or on the flow of digi-
tal signals between hardware registers and the algo-
rithms that manage these signals: Transaction-Level
Model (TLM) and Register-Transfer Level (RTL).

TLM models are closer to how SystemC modules
interchange data between their interfaces/ports, rele-
gating the processing of this data inside the modules
to a secondary position. These models contribute
to the testing process of different components within
an architecture, providing the possibility of verifying
the interoperability between different elements (us-
ing a generic input/output interface). For example,
one of the advantages of using TLM instead of RTL
lies in the use of a different type of busses, making
tests in a same architecture search for the best tim-
ing results [3]. On the other hand, RTL models aim
to signal handling and are more often used for syn-
thesis purposes, since these can be directly injected
into digital hardware.
At this point, it is necessary to go into de-

tails about the co-design methodology that involves
mixed-criticality systems. Fig. 1 shows the v-graph
that illustrates the development process of safety-
critical embedded systems. This process allows lo-
cating the different elements of the cycle that corre-
sponds with the methodology that is described along
this document. As Fig. 2 shows below, co-design is
a process in which software and hardware develop-
ments are separated at a very late stage of develop-
ment into two different tasks. In the first case, re-
quirements and specifications are taken into account
to build a description of the entire system. Once the
specifications have been studied, the system is split
into hardware and software elements, and the de-
velopment process of hardware and software will be
developed separately. These two separated branches
of the tree will arrange and execute tests and veri-
fication methods in order to verify if both hardware
and software achieve the initial specifications, and if
the interface works properly. When the first cycle of
design is over, both hardware and software are joined
together, tested and verified.

Fig. 1. V-Model. The V-model represents a soft-
ware/hardware development process. The process steps
are bent upwards after the coding phase to form a typi-
cal V shape. This model demonstrates the relationships
between each phase of the development life cycle and its
associated testing phase.

This process ends when both hardware and soft-
ware fit perfectly with the specifications described
at the beginning of the development process. This
is an iterative process that, thanks to the utilization
of high level description languages, could be signifi-
cantly accelerated since the impact of moving a com-



ponent from software to hardware or vice versa could
be easily quantified.
Many are the advantages of using a co-design

methodology in mixed-criticality systems For exam-
ple, test benches can be reused for both independent
development tests (HW or SW). As these tests can
also be used at the end of a design cycle, the cost of
the development process decreases.
Other advantages correspond to the highest level

of abstraction in the co-design development process:
the system description. Since requirements are de-
scribed in the first phase of design, it is possible to
add traceability properties to the system description
and extend them towards the end of the development
process. This traceability allows the evolution of the
components in different directions, providing these
elements with a more concrete shape that describes
its nature. For example, a shared resource can be
described in the first stage of development just as a
safety-critical element. In the next stage of develop-
ment, the element is tested and verified but a new
requirement is needed, the element should follow the
automotive certification standards and its date must
be duplicated. The new traceability element shares
redundancy with the previous one safety-critical sys-
tems. Thus, elements obtain a more concrete shape
along the co-design development process and every
single step is extremely linked with the previous and
the next ones.

Fig. 2. SystemC Methodology (Extracted from [2]). It refers
to a process for developing systems that, after describ-
ing the specifications of the entire system, is divided into
software and hardware elements. Hardware and software
elements are developed and tested separately till the last
step, in which both elements are tested and verified with
the same methods.

Co-design also supports the utilization of TLM
and RTL models for hardware and software. There-
fore, by using TLM and RTL models and co-design
methodologies, it is possible to develop different
types of elements that provide the system with safety
features. The elements that we are considering on
our approach are: redundancy within safe communi-
cation channels (Fig. 4), Error Detection and Cor-

rection (EDAC) modules and run-time monitoring
techniques. The goal is to make possible the de-
velopment of safety features that allow for isolation
between critical and non critical elements of the sys-
tems. Note that although all of them are relevant
and useful for embedded systems to reach a certain
degree of safety, this document will focus on the de-
velopment process and details of adding redundancy
to a safe communication channel. This choice comes
from the necessity of following the certification stan-
dards [11] during the development process of a safety
platform with two critical cores in a safety critical
platform.

At the time of implementing this kind of develop-
ment philosophy, we have to link efforts with con-
cepts, descriptions, safety components and target
objectives on which the whole methodology can be
tested. From all these necessities a powerful descrip-
tion method emerges: a case study. A case study is
an intensive, descriptive and explanatory analysis of
an individual unit that shows the elements that con-
stitute a system and the interactions between them.
We have chosen one from an industrial scene that
shows the safety methods regarding the redundancy
of input and output data from two cores. This case
study is described along the next section: a safety
platform library based on SystemC.

III. Case Study description

We have developed a SystemC model that follows
the descriptions and specifications of the case study
presented by Danfoss[15], used as a basic, complete
and real (rich in safety-critical and certification con-
cepts) example for the RECOMP project [16]. This
case study illustrates the execution of a safety func-
tion related to the removal of a torque from an in-
dustry machine including the specification for safety-
critical systems. Fig. 3 illustrates the concept that
involves this case study. The safety function that is
implemented by the system is to remove the torque
from the motor at the moment (a short delay is al-
lowed) an emergency stop button is pushed. There
are two elements between the torque and the emer-
gency stop button: a safety platform that is origi-
nally described as a hardware component and a diag-
nostics signal interpreter. This interpreter evaluates
the output from the safety platform and removes the
torque if that safety function is activated.

On the assumption that human being lives could
depend on the removal of the torque, this stop func-
tion must be monitored and described following the
industrial standard IEC 61508. This certification
standard describes the necessity of adding redun-
dancy features to the exchanged data which diagnose
the removal of the torque. This redundancy feature
is a safety channel architecture 1oo2, which is shown
in Fig. 7.

In spite of the simplicity that this model could
involve, it must be stressed that its complexity relies
on the safety related add-on designed (shown in Fig.
3). This add-on is developed to Safety Integrity Level



3 (SIL3) according to IEC61508:2010[11], Category
4 and Performance Level e (PLe) according to ISO
13849-1 [17].

Fig. 3. Danfoss Case Study. The diagram shows the inter-
connection of different elements of this case study. The
case study is developed according to IEC 61508.

This section describes the implementation of this
case study using SystemC.

Our SystemC model mixes two different types of
modelling: TLM for the highest level of abstrac-
tion, in which the communication among the differ-
ent modules and channels is the most relevant part
of the implementation, and the RTL model that sim-
ulates the behaviour of the safety platform which in-
cludes the utilization of a safety channel module in
each core, in order to establish a safe connection be-
tween cores.

Fig. 4. TLM/RTL Model. Emergency stop, reset, VLT, con-
tactor and torque modules are TLM elements because of
the relevance of their communication nature. The safety
platform is designed following a RTL model to synthesize
the model specifications into FPGAs.

Fig. 4 shows the different components of the model
and the two different parts of it. The TLM section
involves the Activators, the Controller Area Network
(CAN) bus system and the Torque inside the green
square. The blue square contains the RTL part of
the system, the safety platform, which includes the
safety communication between cores.

In the subsections below both TLM and RTL mod-
els are explained in detail.

A. TLM Model

The TLM illustrates the message passing be-
haviour between the different elements of the case
study and how they interact at the highest level of
abstraction. The main difference between TLM and
RTL models is that in TLM modelling there is no
need to define the full behaviour of the element at a
synthesizable level, it can only be defined as an inter-
change of messages through ports/channels from/to
the interfaces of the components.

Fig. 5. TLM model. The main objective of TLM models is to
study and represent the communication between modules.
The use of TLM requires the message passing between all
the elements that represent the system.

As it can be seen in Fig. 5, the idea of using TLM
for all the elements except for the safety platform is
to send messages from the elements that mean inter-
action with the environment, such an emergency stop
button and a reset one. In addition, TLM includes
the system that is in charge of getting and evaluating
the diagnostic results from the safety platform and
means interaction with the Torque element, since in
this model, we will only consider this elements as
output components, just to give a full understanding
of the use of a safety platform.
On the other hand, the decision of using a RTL

model for the safety platform emerged from the ne-
cessity of describing at the highest level of detail this
diagnostic methodology developed by Danfoss, and
the possibility to synthesize and generate code di-
rectly to a FPGA to verify the specifications of the
case study. Moreover, the validation process that in-
volves certification standards requires of good time
accuracy results, which are not available when us-
ing TLM models. TLM models are mainly used for
message payload passing schemas.

B. RTL Model

This RTL SystemC model has been developed on
the basis of a Simulink model provided by Danfoss.
Due to the dataflow nature of the Simulink version of
this case study, we have decided to implement a RTL
version of the problem in SystemC, which is closer
to signals flow, instead of a TLM model.
At the highest level of abstraction, Danfoss Case

Study is described as two different safe cores that
handle redundant output signals, one from each
processor (Fig. 6). Multicore devices are getting
more and more familiar for embedded systems and,
with the proper isolation mechanisms for sharing re-



sources, they are a very good architecture for mixed
criticality system development. Moreover, each pro-
cessor receives as inputs to be re-processed the out-
put signals from the other processor through a safe
channel 1oo2[11] module, providing this case study
with the required redundancy and feedback needed
on industry safety systems, as described in the inter-
national standard IEC 61508[11].
The next figure describes how the two safe cores

of the safety platform interchange data in order to
obtain a redundant output that is later used by the
system that interacts with the Torque. On the left
side it is shown the diagram of the interconnection
between the cores as it is described in IEC 61508
and, on the right side, the SystemC model of this
interconnection.
These redundant outputs contain the information

obtained from the diagnostic stage from each core,
joined with the diagnostic output from the other
core, and are processed in order to activate the Safety
Function, which initiates the Safe Torque Off (STO)
signal in case of failure or emergency stop.

Fig. 6. Safety platform model to achieve redundancy. It
represents the interconnection of two cores using a safe
channel architecture 1oo2 described in IEC 61508 whose
main feature is the redundancy of data.

More precisely, each processor goes through a
power up stage that checks the availability and cor-
rectness of the system components and through a di-
agnostic checking stage. The results of this checking
stage are forwarded to the other processor in order
to verify whether the redundant output from both
processors should be enabled or not, which activates
the Safety Function.
Both redundant outputs signals that activate or

deactivate the Safety Function are connected to the
TLM model of a CAN bus system, which is in charge
of removing the Torque when the Safety Function is
activated and also of providing feedback to the safety
platform about the state of the Torque.
Due to the complexity and the relevance of the

modules that are modelled within the safety plat-
form, the functionality of each core is described in
detail in the next section to provide a proper under-
standing of the whole document.

B.1 Single Processor Model

Each processor is composed of four modules, which
are all interconnected among themselves and that

share the input signals related to the emergency stop
and the reset. These modules can be easily grouped
into three different types of modules according to
their functions: diagnostic modules, reset modules
and communication modules.

Regarding diagnostic modules, this safety platform
includes two types. The first of them is the Power
Up Self Test module. This module starts with a com-
plete checking during the power-on of the system and
waits for a hardware reset of the system. In addi-
tion, it remains activated waiting for the moment
the Safety Function is activated, to contribute to a
full reset of the system. Apart from this Power Up
Self Test module, another diagnostic element resides
inside the safety platform: the Diagnostic module.
This is the main element among the diagnostic pro-
cess. It processes signals after the power-on self test
stage during the whole run-time of the platform, di-
agnosing the state of the platform and transmitting
it to the other core through the most important ele-
ment in this platform, the communication channel.

Other modules that are implemented in this safety
platform belong to the communication process be-
tween cores. Due to the safety-critical nature of the
platform, a design methodology must be followed for
its implementation following the international stan-
dard IEC 61508. This standard describes a safe chan-
nel architecture that consists of two safe channels
connected in parallel so that each channel can pro-
cess the safety function, and the applied diagnosis.
This module is called Safe Channel 1oo2 (Fig. 7)
and is crucial for the diagnostic module because it
receives the output from the other processor though
the safe channel and it is processed depending on the
emergency stop and/or the reset buttons.

Fig. 7. Safe Channel 1oo2 (Extracted from [11]). Concept of a
safe channel 1oo2 architecture. The diagnostic procedure
includes the verification of data shared by two different
channels leading into a single diagnostic result.

The last module that the safety platform includes
is the reset module. This module launches the re-
set function depending on the state in which the
program is and activates the reset function on the
system when required. This module is actually an
emulation of a status machine inside the SystemC
model. Fig. 8 shows the RTL model of a single core
of the safety platform.

This developed methodology, joined with the el-
ements designed for the implementation of a safety
platform, describes the Danfoss case study. Results
will show how this platform, which is modelled using
SystemC, achieves the necessary features required by
safety-critical platforms as certification standards de-



Fig. 8. RTL Model of a Single Core. A single core is made
up of four modules: a power up module which starts a di-
agnostic stage at start up, a diagnostic module that leads
the diagnostic process during the run-time, a safe channel
1oo2 that interconnects with the other core and a reset
module which controls hardware resets.

scribe.

IV. Experimental Results

The critical feature that involves the development
using SystemC, here described within a safety plat-
form, is the possibility of adding redundancy to the
diagnostic process that affects the removal of an in-
dustrial torque. The two cores go through a diag-
nostic state in which local variables, joined with ex-
ternal diagnostic processes received through the safe
channel 1oo2, are evaluated in order to activate or
deactivate the safety function of the torque.

Our approach allows safe communication between
two different cores using SystemC modules. As a
conclusive proof, Fig. 9 shows the behaviour of the
redundant outputs from both core 1 and core 2 that
are activated at the same time, which means that
there is no delay between core communications. This
core safe communication issue is a requirement de-
scribed in the standard IEC 61508 for the industry
domain.

Fig. 9. Core 1 and Core 2 Redundant Outputs. Redundant
outputs from both core 1 and core 2 that are activated at
the same time, which means that there is no delay between
core communications. The fact that both redundant sig-
nals are activated will lead into the activation of the safety
torque-off function.

On the other hand, the necessity of creating these
safety channels 1oo2 in our design results in the pos-
sibility of diagnosing whether the activation of the
safety function STO, which removes the torque, is
required or not. This feature is shown in Fig. 10.
Both core 1 and core 2 local STO status signals are
local values that are the result of diagnosing whether

a STO function is required or not. For this rea-
son, core 1 and core 2 external STO signals describe
the values that each core sends out through the safe
channel 1oo2 to the other core. Once these external
and local values are diagnosed in the diagnostic mod-
ule, if both external and local values are the same for
activating the STO function, the redundant outputs
1 and 2 are generated and sent out to the system in
charge of removing the industrial torque.

Fig. 10. Core 1 and Core 2 Redundant ouputs and STO
signals. Redundant outputs lead into the activation of
the safe torque-off function, which is transmitted to the
other core through safe channels. Using this safe channel
1oo2 contributes to lack of delay in signals from one core
to another.

This approach demonstrates that the utilization of
a safe channel to interconnect two cores using Sys-
temC modules, guarantees a good performance be-
tween the communications of both cores, since sig-
nals do not experiment any delay. Since diagnostic
stage in safety-critical systems is crucial, response
time should be high. This model ensures that the
delay between the intercommunication of two cores
through safe channels, following the description de-
tailed in the certification standard IEC 61508, is null.

Due to the behaviour of safe channels and their
time response, it is important to notice that Sys-
temC allows the addition to the model of time de-
scriptions which are useful to diagnose processors’
features. It is possible to describe the length of an
operation within a processor in nanoseconds or even
at cycle level, making possible a deep description of
the time execution of different tasks in a processor.
This makes possible to describe the worst-case ex-
ecution time and also the best-case execution time,
which are very important to evaluate systems.

Extending this concept to safety-critical systems
makes possible to study the repercussion and impact
of critical and non-critical tasks that could be exe-
cuted at the same time in processors that share mem-
ory. The fact of adding time-execution descriptions
to SystemC models brings the possibility of extract-
ing and determining processor features.

V. Conclusions

Our implementation of a safety platform from a
real case study using SystemC libraries and dif-
ferent types of development methodologies such as
TLM and RTL modelling, in addition to a co-design
methodology, provides developers with a set of tools
that, despite the fact that SystemC does not include
any safety-critical and certification related API, are
able to describe, at both high and low levels of ab-
straction, complex safety-critical systems. Safety-



critical systems are complex systems that need a new
methodology that makes possible the utilization of
accurate descriptions. Furthermore, a progressive re-
finement degree of the implementation is required in
order to validate the requirements that are necessary
for each component within critical systems, such as
isolation and time partitioning. For this reason, our
RTL model of a safety platform extends critical fea-
tures to SystemC that does not include by itself, giv-
ing rise to the possibility of creating a safety-critical
library for further system development.

It seems undeniable that SystemC is a powerful
language that can be used to describe, develop and
verify the main features that the validation progress
of safety-critical systems development involves. Fur-
thermore, co-design brings the opportunity to design
hardware and software separately, despite require-
ments come from a common description, such as cer-
tification standards.

Although the RTL modelling of a safety platform
assumes a complete development process and can be
completely verified, there are some enhancements for
its development.

One of these enhancements is the improvement of
the TLM model, including the RTL model we have
earlier described and developed into a working TLM
model in order to verify the message passing through
channels and ports before synthesizing the system
into a FPGA. Since the TLM model that we have
developed at this moment is still being improved, the
final implementation of TLM and RTL models work-
ing together is one of our ongoing objectives. Fur-
thermore, synthesizing this model into digital hard-
ware would be the last step in the development pro-
cess following a co-design methodology to verify a
proper behaviour of the platform.

Another future work is the addition of a run-time
monitoring module within the system. Run-time
monitoring elements avoid the violation of a fixed
set of conditions (accessing to protected memory re-
gions by non critical modules, over-intensive use of
shared devices, out of range parameters, etc.) that
have been previously defined between elements that
are using the same communication channel (bus, sig-
nal, etc.). More specifically, this new module can
be added to the hardware design as a new library
element in both RTL and TLM models, due to the
advantages of monitoring the outputs and inputs of
modules. By adding this new feature, the torque that
dispatches the information about its status through
the CAN bus directly to the safety platform, would
be intercepted by the run-time monitoring avoiding
the violation of address memory or other modules
inside the safety platform. In this manner, we would
have developed a new library that provides SystemC
designs with a model of a safety platform which in-
cludes a safety redundant channel 1oo2 architecture
described in IEC61508, joined to run-time monitor-
ing components that avoid memory access violation.

Acknowledgments

This work has been supported by the Artemis JU
project RECOMP: Reduced Certification Costs Us-
ing Trusted Multi-core Platforms (Grant Agreement
number 100202).

References

[1] The Open SystemC Initiative , Re-
trieved May 10th, 2012, from
http://www.accellera.org/downloads/standards/systemc/

[2] J. Bhasker, A SystemC Primer. Allentown PA : Star
Galaxy Publishing, 2002. ISBN 0965039188.

[3] David C. Black ... [et al.], SystemC: From the Ground Up.
New York : Springer, 2010 ISBN 9780387699585.

[4] Xilinx Embedded Development Kit, Retrieved May 10th,
2012, from http://www.xilinx.com/tools/platform.htm

[5] Qsys - Altera’s System Integration
Tool, Retrieved May 10th, 2012, from
http://www.altera.com/products/software/quartus-
ii//qts-qsys.html

[6] Xilinx Zynq - Extensible Processing Plat-
form, Retrieved May 10th, 2012, from
http://www.xilinx.com/products/silicon-
devices/epp/zynq-7000/index.htm

[7] Altera SoC FPGA , Retrieved May 10th, 2012, from
http://www.altera.com//soc-fpga/proc-soc-fpga.html

[8] Catapult C Synthesize Tool, Retrieved May 10th, 2012,
from http://www.mentor.com/esl/catapult/

[9] Vivado Design Suite, Retrieved May 10th, 2012, from
http://www.xilinx.com//vivado/

[10] G. De Michell and R. Gupta, Hardware/Software Co-
Design. Proceedings of the IEEE, vol. 85, 1997.

[11] Functional safety of electrical/electronic/programmable
safety related systems. Part 6: Guidelines on the appli-
cation of IEC 61508-2 and IEC 61508-3. BSI Standards
Publication. BS EN 61508-6:2010.

[12] DO-178B, Software Considerations in Airborne Systems
and Equipment Certification.

[13] ISO 26262, Road vehicles - Functional safety.
[14] T. Grötker, S.Liao, G. Marin, and S. Swan, System De-

sign With SystemC. Kluwer Academic Publishers, 2002.
[15] Danfoss Power Electronics, Retrieved May 10th, 2012,

from http://www.danfoss.com/
[16] RECOMP Project, Retrieved May 10th, 2012, from

http://www.recomp-project.eu/
[17] ISO 13849-1, Safety of machinery.


