Tcl interpreter implementation for embedded
systems based on LEON architectures

Rubén Marrer', Javier Mirand', Gustavo M. Callic', Jorge Amad¢, Robero Sarmient’

Abstract—The Europegn Space Agency (ESA) makes I BACKGROUND AND OBJECTIVES
great efforts to harmonize the software technologyhat '
they use. In fact, many standards and concepts adefined This work arises as a collaboration between ESA and
by the Agency. In this context, the Agency has deféd the the Integrated System Design Division (DSI) frone th
concept called On-Board Control Procedures (OBCP)Mat Research Institute for Applied Microelectronics)
F:onsists on a powerful way to control spacecraft @ahto of the University of Las Palmas de Gran Canaria
implement on-board functions. , (ULPGC), with the intention of creating an interjare
anguage mterpreter that could be. funcional n e 107 @ Subset of the Tel language (Tool Command
LEg)N3g architecrt)ture that ESA uses in its missions. This Language). running on emb.edded SVSterT‘S based on
development allows analyzing the possibility of usp LEON arc_hltectures_that ESAis currently using.]
interpreted languages to perform the tasks assignet the The choice of Tcl is based on some of its featuthes:
flight control software. batch execution mode, the simplicity of its syntég,

In order to develop this interpreter, we have stared from ability to be easily extended and its interpretedecthat
an existing one, Jim, which has been rewritten and can be created and modified dynamically.
simplified to optimize the use of resources such athe The overall objective of this project is to analyhe
decrease of memory and the increase of executionesl. possibility of using interpreted languages to ease
After that, the interpreter was implemented in a LEON3 communication and control of spacecrafts from gtbun
simulator and in a LEON3 emulator on a FPGA. , The ultimate objective is summarized in the
orgg:m?othcljsé li:gcetflse' Véeevg?gsegelir;fn‘: aaf]zt c\)/\];gmhnave development of a Tel interpreter, functional in the

LEONS3 architecture for a subset of the language

concluded that the interpreter is functional for aselected . o)
Tcl language subset. P proposed by the ESA and its subsequent validation i
that architecture.

Keywords—On-Board Control Procedures, Tcl, LEON3, Given the characteristics of Tcl and given the
Emulation, FPGA. requirements that are subject to space applicatibis
necessary to establish a subset of the Tcl language
l. INTRODUCTION besides making the interpreter able to be executetie

LEONS architecture. As an embedded applicatiors it
waecessary to optimize the resources used by the

N the last years, the aerospace sector has slow ¢ h as th table si 4 thard
down in adapting to the new communication systeME erpreter, such as the executable size and tharoig

and also in the user-machine interface, due to i{ggm?hry COI’]SUI’T:p.tIOH. ¢ te a tel Bui
traditional habit in using mature technology. Even urthermore, [t1s necessary 1o generate a e sui

though, trying to maintain this principle needs toorder to debug and verify the interpreter during th

incorporate a minimum flexibility to allow compegrat dev_elopment and |mplementat|0n stages, _and toaialid
an industrial level. the interpreter running on the LEONS3 architecture.

Facing this situation, the European Space Agen8AJE
inaugurated its own program in the development of !l LEON3 ARCHITECTURE AND ESA SOFTWARE
microprocessors. Its objective is to facilitate the The LEON project [3] arises in ESA as a successor t
programmer tasks in the final steps of the producthe ERC-32 architecture with the aim of developang
independently of its final field of application:telite, radiation-resistant processor, modular, easily gide;
space shuttle, etc.[1]. with standard interface to execute up to 100 MIP®..
In this context, specifically in the interface cext, the addition to this, the new design, described in VHDL
On-Board Control Procedure (OBCP) concept ariges. Would be licensed under General Public License (GPL
consists on a set of programmed procedures on ,Earédlowing System-on-Chip (SoC) integration in a
which gives a great autonomy to spacecrafts. Itheen simplified way. This new architecture was based on
used ad-hoc during the last 25 years, but ESAdsén SPARC v8, defined through an IEEE standard.
standardize it [2]. Furthermore, the connection of additional modulé$ w
be possible through an AMBA bus system.

At first, it was necessary a previous development
where it could demonstrate its functionality by
! Research Institute for Applied MicroelectronitsNIA), University — implementing a minimum number of interfaces and
of Las Palmas de Gran Canaria (ULPGC). E-mdimarrero, functions. This first prototype was called LEON. &@n
jmiranda, gustavo, roberto}@iuma.ulpgc.es this was verified, the development of a new andemor

2 Head of GSTP Planning and Implementation SectEmopean | b . dd f
Space Agency (ESA). E-majbrge.amador.monteverde@esa.int complete processor began, trying to add new festase

a floating point unit and new interfaces, leadimg ta large subset of the built-in commands of Tclripteter
LEON2 and LEONS3. and it is cross platform suitable, POSIX compliant

LEONS is the one which will be used finally in theable to run on various operating systems like Ljnux
ESA missions, with an architecture based on theREPA FreeBSD, QNX, eCos or Windows.

V8 instruction set and whose main innovations 4te [It combines features of smaller and earlier versioh
« Multiway cache. Tcl (6.x) and modern features of the latest versifhx
« PROM/SRAM/SDRAM controller. and 8.x), while adding its own characteristics.
« AMBA buses (AHB and APB). There exists another Tcl interpreters for embedded
« Advanced debugging on chip system. purpose such as TinyTcl, but it is not being maired

« Power down mode. and documented as well as Jim.

* SPARC v8e extensions.
e 7-stage pipeline: Fetch, Decode, Register V. DEVELOPMENT TOOLS
Access, Execute, Memory, Exception, Write. In this section it is introduced some of the tothlat
have been used during the development process.
On th_e other hand, ESA is making great efforts tg_ BCC Compiler
harmonize its software technology defining many o]
standards and concepts [5]. The application intefan ~ Bare-C Cross-Compileris a cross-compiler for
space systems, which is developed to support daiﬂEONZ and LEONS that includes a wide range of_tpols
operations after the deployment of such systemepés based on GNU ones [8]. It allows compiling
of the main objectives. In this context, the On-Bba Multithreading applications.
Control Procedure (OBCP) concept is defined by ESA TSIM Simulator
[2], and it is the main reason of this project. EB#s

. . . TSIM is an instruction level simulator capable of
published many drafts which aim to study the .
convenience of Java programming language in omler ?mulatmg both ERC32 and LEON based systems. The

substitute languages such as C and ADA, but sorﬁ ol started out as free, but over time, GaisleseRech

features are strongly disputed, because they ate Oeuded to remove the old versions and start gefiw

needed in aerospace context: class loader, justhm- ones [8]. AS. S|mulator,_ It prowdes high accuracyl a
S level emulation cycle time, giving a performanceupf
compilation, etc.

. , 0 45 MIPS.
Th_us, .t.hls paper will ‘attempt to demonstr_ate th&ln LEON mode, TSIM simulates the full functionality
applicability of Tcl as on-Board control softwaiie, a

lue-lanauade manner of the microprocessor, including caches, on-chip
9 guag ' peripherals and a memory controller. TSIM is cutlsen
Vv TeL& I distributed for Linux, Solaris and Windows.

Tcl [6], is an interpreted language created by JohT: GRMON Monitor
Ousterhout in 1988. The main design goal was tatere GRMON is a monitor for the LEON processors
an extremely simple syntax language, in order tdebugger [9]. Once the system is dumped to an FRGA
facilitate its learning, without losing functiongliand an ASIC connected to a PC, GRMON provides a
expressiveness. At the same time it could be iatedr graphical interface in which it is possible to: (@atch
in other applications and could be easily extemsibla every read-write access to all registers and men{@jy
shell scripting way. Tcl scripts can be more comaamc ~ set breakpoints and watchpoints in the code; (Bheot
readable than other scripting languages, so the ¢od with GDB; (4) analyze applications performance; (5)
able to be maintained easily over time. downloading and execution of applications.

Tcl is modular, scalable, cross-platform and can beGRMON, as TSIM, is a propietary software
used as an interactive shell or shell script. Bmgliage distributed for Linux, Solaris and Windows.
is in continuous evolution due to a large community D
developers, highlighting the Tcl Core Team in cleao§ ' L
the interpreter core. This has been possible hargel Valorind is a set of free tools to debug the memory
because it is a free software project, althougtisip has Management of any application [10]. The main taol,

Valgrind

some commercial support packages. least in this work, is memcheck which acts as an
Its scalability allows adding new commands writlen intermediary for all memory requests to the systerd
C, C + + or Java to the standard interpreter. can detect: (1) not allowed memory access; (2)aise

Among the several virtues that Tcl holds as a genertninitialized variables; (3) memory leaks; (4) g
purpose interpreter it is worth to mention thatrénis a T€€S; (5) overlapping source and destination tdock
wide variety of systems that can run the interprétes
included in real-time operating systems such as VI. DEVELOPED INTERPRETERTOBI
VxWorks and the fact that it allows much of the modern Tobi (Tcl On-Board-Interpreter) is the interpretdra
forms of programming: modularization like subroetn subset of the Tcl programming language, designed in
or libraries, standard control structures, exceptiothis work to meet the ESA requirements for on-board
handling and various types of variables like assd@ systems. This subset of the language is a set of
arrays. commands for list handlingcgncat, lappend, lindex
On the other hand, Jim is a small open source rinsert, listandllength), mathematical expressionsxpr
implementation of the Tcl interpreter, very stalaled andincr), control structureseyal, for, foreach, if, return,
modular, with a wide range of extensions [7]. ipjgorts

switchandwhile), 1/0 (open, close, gets, pudsdflush) improve expressions evaluation, substitutions aagd
and variable & procedure Managemeglbbal, procand through prediction routines.
se).

The main objective is that Tobi could be validated A Executable sizes
be used in aerospace applications and thus be’'a i) _
candidate to the OBCP core currently claiming byAES On the Linux Ubuntu platform, the resulting sizes

for their LEON3 architecture. (KB) for Jim and Tobi with and without optimizatisn
The main criteria for the development were: but with the same compiler options (-O0, -O1, -Q3,
« To limit its functionality to the selected tcl seths @' Shown in Fig. 2.
e To reduce its memory consumption. 300

e To respect the design rules followedtatsh and
Jim cores (name and type of data structures,
functions, etc..). 200

e To make it compilable for the LEON architecture B Tobi
while delivering high performance. 150 i

After analyzing thetclsh and Jim implementations, it 4,
was decided to develop the prototype from Jim v0.64
sources. 50 -

A Venn diagram is shown in Fig. 1, representing the
sizes and functionalities of each interpreter.

Tclsh is the Tcl interpreter that consumes more 00 01 02 03 Os
memory and also provides more functionality. Jisaa
reimplementation oftclsh, combines its own specific
functions and those inherited fromslsh Tobi, as a
reimplementation of Jim, provides a subset of Ji
functionality (including those inherited frotalsh) and
also includes its own functions such as /0 comrsand’
that have being reimplemented and even its capatity
being compiled on LEON architecture. As shown ig. Fi
1, Tobi is the smallest Tcl interpreter in functdity and
resource consumption, making it a very suitabléoopt
for embedded applications.

B Tobi + Optim

EJim

Fig. 2. Size (KB) on Linux Ubuntu 10.10.

The difference in size between Tobi, with and witho
ertimizations, is of 4KB, except when the compiler
ption is —Os, in that case sizes are equal.

However, Tobi size is around 100KB, 0.44 times the
Jim size, reaching a minimum of 74 KB with the —Os
compiler option. As referencelclsh v8.5 installation
occupies 4.5 MB on Linux Ubuntu platform.

The difference of sizes between Tobi and Jim aee du
to the reduction of superfluous functionality tiaplies
Tobi an inferior amount of code lines to compile in artte
support a reduced set of commands.

Moreover, in Fig. 3 is shown the obtained TOBI size
using the cross-compileiSparc-elf-gcc (BCC 4.4.2
release 1.0.36b) 4.4.2 for the LEON architectuseyall
as the obtained sizes if it is used thekprom tool
included in the BCC package, that consists in the
compressed boot image of the interpreter, that bell
decompressed in RAM memory once it is booted on the
final system.

350

300 H Tobi

Fig. 1. Venn diagram representing the size andtiomality of tclsh, 250

Jim and Tobi.

200 H Tobi + Optim

VII. PERFORMANCE ANALYSIS 150

This section verifies compliance with the objecsive i Tobi mkprom

through a comprehensive comparison of Tobi againsi 10

Jim andtclshv8.5. 50

The executable sizes, dynamic memory consumptions
and speed will be compared. This comparison isezhrr
out in the development platform (Linux Ubuntu 10.10

becausetclsh and Jim interpreters cannot be compiled Fig. 3. Size (KB) on LEON

into the LEON architecture. The compiler used wes g

(Ubuntu / Linaro 4.4.4-14ubuntu5) 4.4.5. Furtherejor The tendency of sizes showed in F|g 3 is the ambc
this comparison is linked to compiler options angne. The smallest size is obtained using the —@srgp
different TOBI configuration parameters at compifee and the difference of sizes using or not optimazagiis

by using preprocessor directives that enable cabiBs around 2-4 KB. Furthermore, the boot images are
certain parts of the code, such as optimizatiors® thcompressed in a factor that varies from 2.4 to atro

M Tobi + Optim
mkprom

0 !

00 01 02 03 Os

However, the space occupied by these executablesthign Jim, except in -O1 and -Os case@slsh is the
greater than the space occupied in the developmdastest as it was expected.

platform, due to the cross-compiler that includegshe 1,2
executable some static libraries that could neesl th
application; in the development platform thesedii®@s 11
are dynamically loaded by the operating system.
_ _ 08 - H Tobi
B. Dynamic memory consumption 06 = Tobi + Opt

Decreasing the executable size could not be ar
objective if the amount of dynamic memory consumed 0,4 - e
by the application at runtime is not reduced. B Tclsh 8.5

This section makes a comparison of dynamic memory 92
usage during the execution of some of the scripas t
Jim uses to check the performance of the interprete
Such scripts can be found on the Jim developetsitge
[7]. This analysis was conducted through the apfiti Fig. 4. Time (seconds) — iterative script “whileplosp.tcl”
Valgrind (Valgrind-3.6.0.SVN-Debian), which also
allows checking that there is no memory leaks & th 1.2
interpreter, at the same time validating the memory
management. The comparison was made with the-O:

u Jimsh

O,
00 01 02 03 Os Tclsh

1 -

compile option for Tobi and Jim. 0,8 | & Tobi
Table | shows the dynamic memory consumption for)
the most significant Jim scripts. An empty script 06 - - WTobi+Opt
(“empty.tcl”) has been added in order to check how 04 4 u Jimsh
much memory is used passively by the interpreseifit ' B Tclsh 8.5
0,2 -
TABLE |
DYNAMIC MEMORY CONSUMPTION(KIB) 0 -
Tobi | Tobi+ | Jim | Tclsh8s 00 01 02 03 Os Tesh
Opt Fig. 5. Time (seconds) — recursive script “fiboriack
empty.tcl 8 8 52 332
whilebusyloop.tcl 9 9 53 332 VIIIL. FUNCTIONAL TESTS
miniloops.tcl I 11 11 >4 332 | Tobj uses a different method than the generic &g (
”fi)eo—r:gggattltc 52221 = 21321 : 25743 2322 6) used for verification during the developmentgsta
expand.icl 11327 11327 11370 9546 relying on other Tcl interpreter (Fig. 7). In thigy, any

issue in the test infrastructure that could hidecfional
. . misses is avoided. Furthermore, this infrastructaad
It can be seen the memory savings achieved by Tobi . .

; need some commands that are not included in TOBI.
over Jim, especially in iterative algorithms

o N e . The used tests were included in Jim v0.64 and Tclsh
(“whilebusyloop.tcl”, miniloops.tcl and

“use_repeat.tcl”). The differences are primarilyedio v6.7 collections.
the greater functionality offered by Jim that needs

greater number of structures in memory. II
lest

On the other hand, if the execution is recursive
("fibonacci.tcl” and “expand.tcl”) differences beden

Tobi and Jim are no remarkable. However, this istine S—
kind of application that it is expected to find anflight
control software. et rame (80

C. Execution speed e

i i ‘*'S“‘—'m—’(:)—'
In order to determine and compare the execution - ; ﬂ
—

speed, many intensive tests offered by Jim's dpeelo e i
[7] were executed, intended to check how fast the

different interpreters under study for the various

compilation options were.

In Fig.4 and Fig.5 are shown the most represemtativ . , .
results when running the iterative test However, when Tobi is tested on the final systdns i

o " ; used the generic method (Fig. 6) with tests inaiuthe
whilebusyloop.tcl and the recursive te-StJim v0.64 collection, because there is no othealvkd

"fibonacci.tcl', which are quite intensive in .
computation, although our application is not intethdo ;?éhi'ggtrfrr:ter that could be executed on LEON3

execute this kind of applications because it wélrhore
dedicated to control than computation.

Tobi without optimizations is always slower thanbio
with optimizations and Tobi with optimizations isster

INTERPRETER UNDER TEST

Fig. 6. Generic test scheme

C. Tobi emulation in the FPGA without operating
system

After completing the integration process,
application was introduced into the microproces$be
usage of GRMON debug monitor, via JTAG, made it
possible to access to read-write cycles on the bhip
allowing verifying the proper behavior. The emwdati

l was successful.

L REPOAT D .

system

The last step in this verification process was khner
the application on a operating system. In order to
perform this task, TOBI and operating system sairce
)) were compiled together, obtaining a single image to
Thereby, the obtained results were those expected, dump on the microprocessor.
any test that needs commands that Tobi does npbsUp The operating system used was SnapGear Embedded
fails. In that way, 76.17% of Jim test collectionda |[jnhux that is based on a set of source packages tha
42.11% of Tclsh test collection were passed. contains the Linux kernel (2.6), libraries and some
applications to develop Linux-based embedded system
IX. SIMULATION & EMULATION ON LEON3 The tests performed in the FPGA using the operating
Tobi has been executed and tested over an operatfyptem were also correct.
system in a FPGA that emulates LEON3 architectire.
has been done in a 4-stage process:

1) Tobi verification on a simulator. The main objective of this work was to develop a
2) LEONS integration in the FPGA. ~ prototype of a Tcl interpreter, functional on LEON3
3) Tobi emulation in the FPGA without operatingarchitecture for a subset of Tcl language, and its
system.)) _ ~ subsequent validation in an FPGA.
4) Tobi emulation in the FPGA with operating adapting the code to make it compilable for LEON3
system. architecture was achieved by emulating the inteéepre
on the TSIM simulator, which simulates the arcHitee.
Then the interpreter was implemented in a LEON3
FPGA-based architecture with no operating systamd, a
en with Snapgear Embedded Linux operating system.
‘Finally, we conclude that the main objectives a6 th
nﬁ?oject have been achieved since the desired
erformance of this interpreter have been reached,
ven we have demonstrated that this methodologitmig

B EXECUTION
i 0 =

the

TEST SUITE TOBI

contents_of_test -@
passing_results — T

test_name

test_description

Tobi emulation in the FPGA with operating

TCL SHELL

Fig. 7. Modified test scheme for development stage

X. CONCLUSION

A. Tobi verification on a simulator

In order to perform a first test to verify Tobi,eth
commercial emulator TSIM2 developed by Gaisle
Research for LEON and ERC32 architectures was use

Thereby, Tobi was adapted in order to execute so
tests from the Jim package without operating systerm
using the generic method shown in Fig. 6, includin

tests in the Tobi binary file. The results werecassful. be extrapolated to another interpreters for embedde
B. LEONS integration in the FPGA purposes.

The LEON3 VHDL sources and libraries were adapted

and integrated in a ML507 [11] board that includes REFERENCES

Virtex-5 FPGA. The editing and adaptation of thesél]
sources is carried out in the Xilinx ISE 2.1 tablkat has
also been used for the simulation phase (integ}atirﬁz]
simulator Modelsim SE 6.2), synthesis, mapping ang]
routing. Finally, using this tool the FPGA was
programmed successfully. (4]
The design occupies 58% of the FPGA slices, stillit s 5]

has enough room to add new modules. The percentage

of I/O pins used is 47% and, from the total avddab [6]
memory on the FPGA, it has taken only 13%, whick!
corresponds to a total of 720Kbyte; the rest of wm 8]
is taken from the external RAM.

(9]

[10]

Gaisler, J. The LEON Processor User's MantiaR.3.5, Gaisler
Research.

ECSS Space EngineeringSpacecraft On-Board Control
Procedures’"ECSS-E-ST-70-01C, 2010.

Clarke, P. European Space Agency launches free Sparc-like
core”. EETimes. 2000.

J. Gaisler, S. Habinc, et alGRLIB IP CORE User's manual”
v1.0.19. 2008.

ESA “European Space Technology Harmonisation Technical
Dossier”. 2010.

Tcl Developer Xchangeéttp://www.tcl.tk

The Jim Interpreter: A small footprint implementatiof the Tcl
programming languagehttp://jim.tcl.tk

Gaisler, J. BCC — Bare-C Cross-CompilerUser's Mantal
v1.0.29, Gaisler Research.

Gaisler, J. GRMON User's Manuélv1.1.32, Gaisler Research.
Valgrind http://valgrind.org.

[11] Xilinx Inc. “ML505/ML506/ML507 Evaluation Platform: User

Guide. XILINX VIRTEX-52009.

