

Abstract—The European Space Agency (ESA) makes
great efforts to harmonize the software technology that
they use. In fact, many standards and concepts are defined
by the Agency. In this context, the Agency has defined the
concept called On-Board Control Procedures (OBCP) that
consists on a powerful way to control spacecraft and to
implement on-board functions.12

The main purpose of this work is to develop a Tcl
language interpreter that could be functional in the
LEON3 architecture that ESA uses in its missions. This
development allows analyzing the possibility of using
interpreted languages to perform the tasks assigned to the
flight control software.

In order to develop this interpreter, we have started from
an existing one, Jim, which has been rewritten and
simplified to optimize the use of resources such as the
decrease of memory and the increase of execution speed.
After that, the interpreter was implemented in a LEON3
simulator and in a LEON3 emulator on a FPGA.

During this process, we have generated a set of tests in
order to debug the developed system and we have
concluded that the interpreter is functional for a selected
Tcl language subset.

Keywords—On-Board Control Procedures, Tcl, LEON3,

Emulation, FPGA.

I. INTRODUCTION

N the last years, the aerospace sector has slowed
down in adapting to the new communication systems

and also in the user-machine interface, due to its
traditional habit in using mature technology. Even
though, trying to maintain this principle needs to
incorporate a minimum flexibility to allow competing at
an industrial level.
Facing this situation, the European Space Agency (ESA)
inaugurated its own program in the development of
microprocessors. Its objective is to facilitate the
programmer tasks in the final steps of the product,
independently of its final field of application: satellite,
space shuttle, etc.[1].
In this context, specifically in the interface context, the
On-Board Control Procedure (OBCP) concept arises. It
consists on a set of programmed procedures on Earth,
which gives a great autonomy to spacecrafts. It has been
used ad-hoc during the last 25 years, but ESA intends to
standardize it [2].

1 Research Institute for Applied Microelectronics (IUMA), University
of Las Palmas de Gran Canaria (ULPGC). E-mail: {rmarrero,
jmiranda, gustavo, roberto}@iuma.ulpgc.es
2 Head of GSTP Planning and Implementation Section, European
Space Agency (ESA). E-mail: jorge.amador.monteverde@esa.int

II. BACKGROUND AND OBJECTIVES

This work arises as a collaboration between ESA and
the Integrated System Design Division (DSI) from the
Research Institute for Applied Microelectronics (IUMA)
of the University of Las Palmas de Gran Canaria
(ULPGC), with the intention of creating an interpreter
for a subset of the Tcl language (Tool Command
Language) running on embedded systems based on
LEON architectures that ESA is currently using.

The choice of Tcl is based on some of its features: the
batch execution mode, the simplicity of its syntax, its
ability to be easily extended and its interpreted code that
can be created and modified dynamically.

The overall objective of this project is to analyze the
possibility of using interpreted languages to ease
communication and control of spacecrafts from ground.

The ultimate objective is summarized in the
development of a Tcl interpreter, functional in the
LEON3 architecture for a subset of the language
proposed by the ESA and its subsequent validation in
that architecture.

Given the characteristics of Tcl and given the
requirements that are subject to space applications, it is
necessary to establish a subset of the Tcl language,
besides making the interpreter able to be executed on the
LEON3 architecture. As an embedded application, it is
necessary to optimize the resources used by the
interpreter, such as the executable size and the dynamic
memory consumption.

Furthermore, it is necessary to generate a test suite in
order to debug and verify the interpreter during the
development and implementation stages, and to validate
the interpreter running on the LEON3 architecture.

III. LEON3 ARCHITECTURE AND ESA SOFTWARE

The LEON project [3] arises in ESA as a successor to
the ERC-32 architecture with the aim of developing a
radiation-resistant processor, modular, easily portable,
with standard interface to execute up to 100 MIPS.. In
addition to this, the new design, described in VHDL,
would be licensed under General Public License (GPL),
allowing System-on-Chip (SoC) integration in a
simplified way. This new architecture was based on
SPARC v8, defined through an IEEE standard.
Furthermore, the connection of additional modules will
be possible through an AMBA bus system.

At first, it was necessary a previous development

where it could demonstrate its functionality by
implementing a minimum number of interfaces and
functions. This first prototype was called LEON. Once
this was verified, the development of a new and more
complete processor began, trying to add new features as

I

Tcl interpreter implementation for embedded
systems based on LEON architectures

Rubén Marrero1, Javier Miranda1, Gustavo M. Callico1, Jorge Amador2, Roberto Sarmiento1

a floating point unit and new interfaces, leading to
LEON2 and LEON3.

LEON3 is the one which will be used finally in the
ESA missions, with an architecture based on the SPARC
V8 instruction set and whose main innovations are [4]:

• Multiway cache.
• PROM/SRAM/SDRAM controller.
• AMBA buses (AHB and APB).
• Advanced debugging on chip system.
• Power down mode.
• SPARC v8e extensions.
• 7-stage pipeline: Fetch, Decode, Register

Access, Execute, Memory, Exception, Write.

On the other hand, ESA is making great efforts to

harmonize its software technology defining many
standards and concepts [5]. The application interfaces in
space systems, which is developed to support daily
operations after the deployment of such systems, is one
of the main objectives. In this context, the On-Board
Control Procedure (OBCP) concept is defined by ESA
[2], and it is the main reason of this project. ESA has
published many drafts which aim to study the
convenience of Java programming language in order to
substitute languages such as C and ADA, but some
features are strongly disputed, because they are not
needed in aerospace context: class loader, just-in-time
compilation, etc.

Thus, this paper will attempt to demonstrate the
applicability of Tcl as on-Board control software, in a
glue-language manner.

IV. TCL & JIM

Tcl [6], is an interpreted language created by John
Ousterhout in 1988. The main design goal was to create
an extremely simple syntax language, in order to
facilitate its learning, without losing functionality and
expressiveness. At the same time it could be integrated
in other applications and could be easily extensible in a
shell scripting way. Tcl scripts can be more compact and
readable than other scripting languages, so the code is
able to be maintained easily over time.

Tcl is modular, scalable, cross-platform and can be
used as an interactive shell or shell script. The language
is in continuous evolution due to a large community of
developers, highlighting the Tcl Core Team in charge of
the interpreter core. This has been possible largely
because it is a free software project, although it also has
some commercial support packages.

Its scalability allows adding new commands written in
C, C + + or Java to the standard interpreter.

Among the several virtues that Tcl holds as a general
purpose interpreter it is worth to mention that there is a
wide variety of systems that can run the interpreter, it is
included in real-time operating systems such as
VxWorks; and the fact that it allows much of the modern
forms of programming: modularization like subroutines
or libraries, standard control structures, exception
handling and various types of variables like associative
arrays.

On the other hand, Jim is a small open source re-
implementation of the Tcl interpreter, very stable and
modular, with a wide range of extensions [7]. It supports

a large subset of the built-in commands of Tcl interpreter
and it is cross platform suitable, POSIX compliant and
able to run on various operating systems like Linux,
FreeBSD, QNX, eCos or Windows.

It combines features of smaller and earlier versions of
Tcl (6.x) and modern features of the latest versions (7.x
and 8.x), while adding its own characteristics.

There exists another Tcl interpreters for embedded
purpose such as TinyTcl, but it is not being maintained
and documented as well as Jim.

V. DEVELOPMENT TOOLS

In this section it is introduced some of the tools that
have been used during the development process.

A. BCC Compiler

Bare-C Cross-Compiler is a cross-compiler for
LEON2 and LEON3 that includes a wide range of tools
based on GNU ones [8]. It allows compiling
multithreading applications.

B. TSIM Simulator

TSIM is an instruction level simulator capable of
emulating both ERC32 and LEON based systems. The
tool started out as free, but over time, Gaisler Research
decided to remove the old versions and start selling new
ones [8]. As simulator, it provides high accuracy and a
level emulation cycle time, giving a performance of up
to 45 MIPS.

In LEON mode, TSIM simulates the full functionality
of the microprocessor, including caches, on-chip
peripherals and a memory controller. TSIM is currently
distributed for Linux, Solaris and Windows.

C. GRMON Monitor

GRMON is a monitor for the LEON processors
debugger [9]. Once the system is dumped to an FPGA or
an ASIC connected to a PC, GRMON provides a
graphical interface in which it is possible to: (1) watch
every read-write access to all registers and memory; (2)
set breakpoints and watchpoints in the code; (3) connect
with GDB; (4) analyze applications performance; (5)
downloading and execution of applications.

GRMON, as TSIM, is a propietary software
distributed for Linux, Solaris and Windows.

D. Valgrind

Valgrind is a set of free tools to debug the memory
management of any application [10]. The main tool, at
least in this work, is memcheck, which acts as an
intermediary for all memory requests to the system and
can detect: (1) not allowed memory access; (2) use of
uninitialized variables; (3) memory leaks; (4) illegal
frees; (5) overlapping source and destination blocks.

VI. DEVELOPED INTERPRETER: TOBI

Tobi (Tcl On-Board-Interpreter) is the interpreter of a
subset of the Tcl programming language, designed in
this work to meet the ESA requirements for on-board
systems. This subset of the language is a set of
commands for list handling (concat, lappend, lindex,
linsert, list and llength), mathematical expressions (expr
and incr), control structures (eval, for, foreach, if, return,

switch and while), I/O (open, close, gets, puts and flush)
and variable & procedure Management (global, proc and
set).

The main objective is that Tobi could be validated to
be used in aerospace applications and thus be a
candidate to the OBCP core currently claiming by ESA
for their LEON3 architecture.

The main criteria for the development were:
• To limit its functionality to the selected tcl subset.
• To reduce its memory consumption.
• To respect the design rules followed in tclsh and

Jim cores (name and type of data structures,
functions, etc..).

• To make it compilable for the LEON architecture
while delivering high performance.

After analyzing the tclsh and Jim implementations, it
was decided to develop the prototype from Jim v0.64
sources.

A Venn diagram is shown in Fig. 1, representing the
sizes and functionalities of each interpreter.

Tclsh is the Tcl interpreter that consumes more
memory and also provides more functionality. Jim, as a
reimplementation of tclsh, combines its own specific
functions and those inherited from tclsh. Tobi, as a
reimplementation of Jim, provides a subset of Jim
functionality (including those inherited from tclsh) and
also includes its own functions such as I/O commands
that have being reimplemented and even its capacity of
being compiled on LEON architecture. As shown in Fig.
1, Tobi is the smallest Tcl interpreter in functionality and
resource consumption, making it a very suitable option
for embedded applications.

Fig. 1. Venn diagram representing the size and functionality of tclsh,

Jim and Tobi.

VII. PERFORMANCE ANALYSIS

This section verifies compliance with the objectives
through a comprehensive comparison of Tobi against
Jim and tclsh v8.5.

The executable sizes, dynamic memory consumptions
and speed will be compared. This comparison is carried
out in the development platform (Linux Ubuntu 10.10)
because tclsh and Jim interpreters cannot be compiled
into the LEON architecture. The compiler used was gcc
(Ubuntu / Linaro 4.4.4-14ubuntu5) 4.4.5. Furthermore,
this comparison is linked to compiler options and
different TOBI configuration parameters at compile time
by using preprocessor directives that enable or disable
certain parts of the code, such as optimizations that

improve expressions evaluation, substitutions and loops
through prediction routines.

A. Executable sizes

On the Linux Ubuntu platform, the resulting sizes
(KB) for Jim and Tobi with and without optimizations,
but with the same compiler options (-O0, -O1, -O2, …),
are shown in Fig. 2.

Fig. 2. Size (KB) on Linux Ubuntu 10.10.

The difference in size between Tobi, with and without

optimizations, is of 4KB, except when the compiler
option is –Os, in that case sizes are equal.

However, Tobi size is around 100KB, 0.44 times the
Jim size, reaching a minimum of 74 KB with the –Os
compiler option. As reference, Tclsh v8.5 installation
occupies 4.5 MB on Linux Ubuntu platform.

The difference of sizes between Tobi and Jim are due
to the reduction of superfluous functionality that implies
an inferior amount of code lines to compile in order to
support a reduced set of commands.

Moreover, in Fig. 3 is shown the obtained TOBI sizes
using the cross-compiler Sparc-elf-gcc (BCC 4.4.2
release 1.0.36b) 4.4.2 for the LEON architecture, as well
as the obtained sizes if it is used the mkprom tool
included in the BCC package, that consists in the
compressed boot image of the interpreter, that will be
decompressed in RAM memory once it is booted on the
final system.

Fig. 3. Size (KB) on LEON

The tendency of sizes showed in Fig. 3 is the expected

one. The smallest size is obtained using the –Os option,
and the difference of sizes using or not optimizations is
around 2-4 KB. Furthermore, the boot images are
compressed in a factor that varies from 2.4 to almost 3.

However, the space occupied by these executables is
greater than the space occupied in the development
platform, due to the cross-compiler that includes in the
executable some static libraries that could need the
application; in the development platform these libraries
are dynamically loaded by the operating system.

B. Dynamic memory consumption

Decreasing the executable size could not be an
objective if the amount of dynamic memory consumed
by the application at runtime is not reduced.

This section makes a comparison of dynamic memory
usage during the execution of some of the scripts that
Jim uses to check the performance of the interpreter.
Such scripts can be found on the Jim developer's website
[7]. This analysis was conducted through the application
Valgrind (Valgrind-3.6.0.SVN-Debian), which also
allows checking that there is no memory leaks in the
interpreter, at the same time validating the memory
management. The comparison was made with the-O2
compile option for Tobi and Jim.

Table I shows the dynamic memory consumption for
the most significant Jim scripts. An empty script
(“empty.tcl”) has been added in order to check how
much memory is used passively by the interpreter itself.

TABLE I

DYNAMIC MEMORY CONSUMPTION (KIB)

 Tobi Tobi +
Opt

Jim Tclsh8.5

empty.tcl 8 8 52 332
whilebusyloop.tcl 9 9 53 332

miniloops.tcl 11 11 54 332
use_repeat.tcl 12 12 54 332
fibonacci.tcl 5231 5231 5273 332
expand.tcl 11327 11327 11370 9546

It can be seen the memory savings achieved by Tobi

over Jim, especially in iterative algorithms
(“whilebusyloop.tcl”, “miniloops.tcl” and
“use_repeat.tcl”). The differences are primarily due to
the greater functionality offered by Jim that needs a
greater number of structures in memory.

On the other hand, if the execution is recursive
(”fibonacci.tcl” and “expand.tcl”) differences between
Tobi and Jim are no remarkable. However, this is not the
kind of application that it is expected to find in a flight
control software.

C. Execution speed

In order to determine and compare the execution
speed, many intensive tests offered by Jim's developer
[7] were executed, intended to check how fast the
different interpreters under study for the various
compilation options were.

In Fig.4 and Fig.5 are shown the most representative
results when running the iterative test
"whilebusyloop.tcl" and the recursive test
"fibonacci.tcl", which are quite intensive in
computation, although our application is not intended to
execute this kind of applications because it will be more
dedicated to control than computation.

Tobi without optimizations is always slower than Tobi
with optimizations and Tobi with optimizations is faster

than Jim, except in -O1 and -Os cases. Tclsh is the
fastest as it was expected.

Fig. 4. Time (seconds) – iterative script “whilebusyloop.tcl”

Fig. 5. Time (seconds) – recursive script “fibonacci.tcl”

VIII. FUNCTIONAL TESTS

Tobi uses a different method than the generic one (Fig.
6) used for verification during the development stage,
relying on other Tcl interpreter (Fig. 7). In this way, any
issue in the test infrastructure that could hide functional
misses is avoided. Furthermore, this infrastructure could
need some commands that are not included in TOBI.
The used tests were included in Jim v0.64 and Tclsh
v6.7 collections.

Fig. 6. Generic test scheme

However, when Tobi is tested on the final system, it is

used the generic method (Fig. 6) with tests included in
Jim v0.64 collection, because there is no other reliable
Tcl interpreter that could be executed on LEON3
architecture.

Fig. 7. Modified test scheme for development stage

Thereby, the obtained results were those expected, i.e.,

any test that needs commands that Tobi does not support
fails. In that way, 76.17% of Jim test collection and
42.11% of Tclsh test collection were passed.

IX. SIMULATION & EMULATION ON LEON3

Tobi has been executed and tested over an operating
system in a FPGA that emulates LEON3 architecture. It
has been done in a 4-stage process:

1) Tobi verification on a simulator.
2) LEON3 integration in the FPGA.
3) Tobi emulation in the FPGA without operating

system.
4) Tobi emulation in the FPGA with operating

system.

A. Tobi verification on a simulator

In order to perform a first test to verify Tobi, the
commercial emulator TSIM2 developed by Gaisler
Research for LEON and ERC32 architectures was used.

Thereby, Tobi was adapted in order to execute some
tests from the Jim package without operating system, but
using the generic method shown in Fig. 6, including
tests in the Tobi binary file. The results were successful.

B. LEON3 integration in the FPGA

The LEON3 VHDL sources and libraries were adapted
and integrated in a ML507 [11] board that includes a
Virtex-5 FPGA. The editing and adaptation of these
sources is carried out in the Xilinx ISE 2.1 tool, that has
also been used for the simulation phase (integrating
simulator Modelsim SE 6.2), synthesis, mapping and
routing. Finally, using this tool the FPGA was
programmed successfully.

The design occupies 58% of the FPGA slices, so it still
has enough room to add new modules. The percentage
of I/O pins used is 47% and, from the total available
memory on the FPGA, it has taken only 13%, which
corresponds to a total of 720Kbyte; the rest of memory
is taken from the external RAM.

C. Tobi emulation in the FPGA without operating
system

After completing the integration process, the
application was introduced into the microprocessor. The
usage of GRMON debug monitor, via JTAG, made it
possible to access to read-write cycles on the chip bus
allowing verifying the proper behavior. The emulation
was successful.

D. Tobi emulation in the FPGA with operating
system

The last step in this verification process was checking
the application on a operating system. In order to
perform this task, TOBI and operating system sources
were compiled together, obtaining a single image to
dump on the microprocessor.

The operating system used was SnapGear Embedded
Linux that is based on a set of source packages that
contains the Linux kernel (2.6), libraries and some
applications to develop Linux-based embedded systems.

The tests performed in the FPGA using the operating
system were also correct.

X. CONCLUSION

The main objective of this work was to develop a
prototype of a Tcl interpreter, functional on LEON3
architecture for a subset of Tcl language, and its
subsequent validation in an FPGA.

Adapting the code to make it compilable for LEON3
architecture was achieved by emulating the interpreter
on the TSIM simulator, which simulates the architecture.
Then the interpreter was implemented in a LEON3
FPGA-based architecture with no operating system, and
then with Snapgear Embedded Linux operating system.

Finally, we conclude that the main objectives of this
project have been achieved since the desired
performance of this interpreter have been reached, and
even we have demonstrated that this methodology might
be extrapolated to another interpreters for embedded
purposes.

REFERENCES
[1] Gaisler, J. “The LEON Processor User’s Manual” v2.3.5, Gaisler

Research.
[2] ECSS Space Engineering “Spacecraft On-Board Control

Procedures” ECSS-E-ST-70-01C, 2010.
[3] Clarke, P. “European Space Agency launches free Sparc-like

core”. EETimes. 2000.
[4] J. Gaisler, S. Habinc, et al. “GRLIB IP CORE User’s manual”

v1.0.19. 2008.
[5] ESA “European Space Technology Harmonisation Technical

Dossier”. 2010.
[6] Tcl Developer Xchange: http://www.tcl.tk
[7] The Jim Interpreter: A small footprint implementation of the Tcl

programming language :http://jim.tcl.tk
[8] Gaisler, J. “BCC – Bare-C Cross-CompilerUser’s Manual”

v1.0.29, Gaisler Research.
[9] Gaisler, J. “GRMON User’s Manual” v1.1.32, Gaisler Research.
[10] Valgrind http://valgrind.org.
[11] Xilinx Inc. “ML505/ML506/ML507 Evaluation Platform: User

Guide. XILINX VIRTEX-5” 2009.

