

Abstract— this article presents a programming

methodology based on High Level Parallel Compositions

(CPAN in the Spanish acronym) within a methodological

infrastructure made up of an environment of Parallel

Objects [10], an approach to Structured Parallel

Programming and the Object-Orientation paradigm. The

implementation of commonly used communication

patterns is explained by applying the method (the

CpanFarm, CpanPipe and CpanTreeDV that represent

respectively, the patterns of communication Farm, Pipeline

and Binary Tree, the latter one used within a parallel

version of the design technique known as Divide &

Conquer), which conforms a library of classes suitable for

use in applications within the programming environment

of the C++ and POSIX standards for thread programming.

Thus, in this work presents the design of the CPAN that

implements a parallelization of the algorithmic design

technique named Branch & Bound and uses it to solve the

Travelling Salesman Problem (TSP).

Keywords— Parallel Object, CPAN, Structured Parallel

Programming, Communication Patterns, HPC.

I. INTRODUCTION

btaining efficiency in parallel programs is so much

a problem of acquiring processor speed, but rather,

it is about how to program efficient

interaction/communication patterns among the processes

[1], [2], [4], [6] to achieve the maximum possible speed-

up of a given parallel application. Parallel Programming

based on the use of communication patterns is known as

Structured Parallel Programming (SPP) ([6], [7]. The

widespread adoption of SPP methods by programmers

and system analysts currently presents a series of open

problems. We are particularly interested in proposing

new solutions to the following: (a) the lack of SPP

methods applicable to the development of a wider range

of software applications; (b) the determination of a

complete set of communication patterns and their

semantics; (c) the necessity to make predefined

communication patterns or high level parallel

compositions available to the community, aimed at

encapsulating parallel code within programs; (d) the

adoption of a sound (i.e. without anomalies)

programming approach based on merging concurrent

primitives and Object-Oriented (O-O) features, thereby

meeting the requirements of uniformity, genericity and

reusability of software components [6]. The present

investigation is focused on SPP methods, and a new

implementation is proposed (carried out with C++ and

the POSIX Threads Library) of a library of High Level

Parallel Composition (CPAN) [6], [7] classes, which

provide the programmer with the communication

patterns most commonly used in Parallel Programming.

At the moment, the library includes the following ones:

CpanFarm, CpanPipe, CpnaTreeDV, the latter one being

used in a parallel version of Divide & Conquer

algorithmic design technique and CpanFarmBB that is

one pattern composed with Farm process that

implements a parallelization of the algorithmic design

technique named Branch & Bound.

A. The problem being tackled

In order to cope with the above described items, we have

found that an O-O Parallel Programming environment

providing the features listed below must be used, (a)

capacity of object method invocation that assumes

asynchronous message passing and asynchronous

futures; (b) the objects should have internal parallelism;

(c) availability of different communication mechanisms

when service of petitions from client processes take

place in parallel; (d) distribution transparency of

processes within parallel applications; (e)

Programmability, portability and performance, as a

consequence of software development within an O-O

programming system.

B. Scientific objectives in this research

The current investigation has mostly been carried out

within the PhD thesis research work referenced in [8],

whose achieved operational objectives are listed below:

1. To develop a programming method based on High

Level Parallel Compositions or CPANs.

2. To develop a library of classes of parallel objects [10]

that provides the programmer or the analyst with a set

of commonly used communication patterns for

parallel programming; the objects should be

uniformly programmed as reusable, generic, CPANs.

To offer this library to the programmer, so that he/she

can exploit it by defining new patterns, adapted to the

communication structure of processes in his/her parallel

applications, by following an O-O programming

paradigm, which includes class inheritance and object

generic instantiation as its main reusability mechanisms.

O

Composition of Parallel Objects to implement

Communication Patterns
Mario Rossainz López

1
, Manuel I. Capel Tuñón

2

1
Benemérita Universidad Autónoma de Puebla. Avda. San Claudio y 14 Sur, San Manuel. 72000,

Puebla, Puebla, México
2
Universidad de granada, DLSI-ETSII. C/Periodista Daniel Saucedo Aranda S/N

18071, Granada, España

manuelcapel@ugr.es, rossainz@cs.buap.mx

mailto:manuelcapel@ugr.es
mailto:rossainz@cs.buap.mx

II. HIGH LEVEL PARALLEL COMPOSITIONS

(CPANS)

The basic idea of the programming method consists of

the implementation of any type of communication

patterns between parallel processes of an application or

distributed/parallel algorithm as CPAN classes,

following the O-O paradigm. CPANs are aimed at

helping parallel applications programmers in

programming efficient, portable and easy to program

code by encapsulating parallelism or communication

protocols from the sequential application processes of

the parallel applications [8]. CPANs are structured as

three classes of parallel objects [10], see Figure 1.

Figure 1. Internal Structure of a CPAN

An object manager, which is the only visible interface to

the sequential processes in a parallel application,

composed of the collector and stages objects and should

be coordinated by the manager itself, see Figure 2.

Figure 2. The Manager Object (Internal Structure)

The stage objects intended to configure a connection

topology among these objects in order to provide a given

communication pattern semantics. The stage objects are

objects of specific purpose responsible for encapsulating

a client-server type interface between the manager and

the object slaves (objects that are not actively

participative in the composition of the CPAN, but rather,

are considered external entities that contain the

sequential algorithm constituting the solution of a given

problem), see Figure 3.

Figure 3. The Stage Object (Internal Structure)

An object collector in charge of storing in parallel the

results received from the stages during the service of a

sequential process petition. The control flow within the

stages of a CPAN depends on the communication

pattern implemented between these. When the CPAN

concludes its execution, the result does not return to the

manager directly, but rather to an instance of the class

Collector, which takes charge of storing these results

and of sending them to the manager, which then sends

them to the exterior as they arrive, i.e., without begin

necessary to wait for all the results to be obtained at the

end of the computation. See Figure 4.

Figure 4. The Collector Object (Internal Structure)

A. Types of communication between the parallel

objects

1. The synchronous way stops the client’s activity until

the object’s active server gives back the answer to the

petition.

2. The asynchronous way does not force any waiting in

the client’s activity; the client simply sends its

petition to the active server and then it continues.

3. The asynchronous future way makes only to wait the

client’s activity when the result of the invoked

method is needed to evaluate an expression during its

code execution.

B. Basic classes of a CPAN

 The abstract class ComponentManager defines the

generic structure of the component manager of a

CPAN, from which all the concrete manager classes

are derived, depending on the parallel behavior

which is needed to create a specific CPAN.

 The abstract class ComponentStage defines the

generic structure of the component stage of a CPAN

as well as its interconnections, so that all the

concrete stages needed to provide a CPAN with a

given parallel behavior can be obtained by class

instantiation.

Colector Stage

Manager

Slave

Stage

Stage

Stage

Slave

Slave

Slave

Stage

Control
and Command

Request input on service of
execution of the algorithm
of solution from the
Manager or other stage(s)

Output of results and/or
requests on service of
execution towards other
stage(s) or exit of results
towards the collector

 Slave Object

Algorithm of
Solution

Interface
Client-Server

Collector

Structure of storage

Input of results of one or
more stages

Output of results towards
his manager

Manager

Control Center

Input of the problem
to solve provided by
the user

Request on service of execution of the
algorithm of the solution to stages

Input of the solution of the received

problem of a Collector object

 The concrete class ComponentCollector defines the

concrete structure of the component collector of any

CPAN. It implements a multi-item buffer, which

permits the storage of the results from stages that

make reference to this collector.

C. The synchronization restrictions MaxPar, Mutex

and Sync

Synchronization mechanisms are needed when several

petitions of service take place in parallel in a CPAN,

being capable its constituting parallel objects of

interleaving their concurrent executions while, and at the

same time, they preserve the consistency of the data

being processed [10]. Within the code of any CPAN,

execution constraints are automatically included when

the reserved words MAXPAR, MUTEX and SYNC of

the library are found. The latter ones must be used to

obtain a correct programming of object methods and to

guarantee data consistency in applications.

III. THE CPANS FARM, PIPE AND TREEDV

The parallel patterns applied until now have been the

Pipeline, the farm and the treeDV.

The Pipeline is made up of a set of interconnected

stages, one after another, in which the information flows

between these until an ending condition is determined in

one of them. At this moment the pipeline enters in

another execution mode in which each stage unloads its

data to the next one. The last stage is responsible for

sending the processes data to the Collector. See Figure

5.

Figure 5. The CPAN of a Pipeline

The Farm is composed of a set of worker processes

executed in parallel until a common objective is reached,

and a controller in charge of distributing work and

controlling the progress of the global calculation. See

Figure 6.

Figure 6. The CPAN of a Farm

The TreeDV is a communication pattern in which the

information flows from the root to the leaves of the tree

and vice versa. The nodes on the same level are

executed in parallel in order to implement a parallel

version of the so called Divide & Conquer algorithmic

design technique. The stage situated at the root of the

TreeDV will obtain the solution of the problem when the

global calculation finishes. This CPAN is configured in

a similar way. See Figure 7.

Figure 7. The CPAN of a TreeD

These constitute a significant set of reusable

communication patterns in multiple parallel applications

and algorithms. See [5], [8], for details.

A. Results obtained

Some CPANs adapt better to the communication

structure of a given algorithm than others, therefore

yielding different speedups of the whole parallel

application. The way in which it must be used to build a

complete parallel application is detailed below.

1. It is necessary to create an instance of the adequate

class manager, that is to say, a specialized instance

(this involves the use of inheritance and generic

instantiation) implementing the required parallel

Collector
Stage_n

Manager

Slave
Object

Stage_n-1

Stage_n-2

Stage_1

Slave
Object

Slave
Object

Slave
Object

Collector
Stage_n

Manager

Slave
Object

Stage_n-1

Stage_n-2

Stage_1

Slave
Object

Slave
Object

Slave
Object

Collector

Stage

Manager

Stage

Stage

Stage

Slave
Object

Stage

Stage

Stage

SO

SO

SO

SO

SO

SO

behavior of the final manager object. This is

performed by following the steps:

1.1. Instance initialization from the class manager,

including the information, given as associations of

pairs (slave_obj, associated_method); the first

element is a reference to the slave object being

controlled by each stage and the second one is the

name of its callable method.

1.2. The internal stages are created (by using the

operation init()) and, for each one, the association

(slave_obj, associated_method) is passed to. The

second element is needed to invoke the

associated_method on the slave object.

2. The user asks the manager to start a calculation by

invoking the execution () method of a given CPAN.

This execution is carried out as it follows:

2.1. a collector object is created for satisfying this

petition;

2.2. input data are passed to the stages (without any

verification of types) and a reference to the

collector;

2.3. results are obtained from the object collector;

2.4. The collector returns the results to the exterior

without type verification.

3. An object manager will have been created and

initialized and some execution petitions can then start

to be dispatched in parallel.

We carried out a Speedup analysis of the Farm, Pipe and

TreeDV CPANs for several algorithms in an Origin

2000 Silicon Graphics Parallel System (with 64

processors) located at the European Center for

Parallelism in Barcelona (Spain) this analysis is

discussed below.

Assuming that we want to sort an array of data, some

CPANs will adapt better to communication structure of

a Quicksort algorithm than others. These different

parallel implementations of the same sequential

algorithm will therefore yield different speedups. The

program is structured of six set of classes instantiated

from the CPANs in the library High Level Parallel

Compositions, which constitute the implementation of

the parallel patterns named Farm, Pipe and TreeDV. The

sets of classes are listed below:

1. The set of the classes base, necessary to build a given

CPAN.

2. The set of the classes that define the abstract data

types needed in the sorting.

3. The set of classes that define the slave objects, which

will be generically instantiated before being used by

the CPANs.

4. The set of classes that define the Cpan Farm.

5. The set of classes that define the Cpan Pipe.

6. The set of classes that define the Cpan TreeDV.

This analysis of speedup of the CPANs appears in

Figures 8, 9 and 10. In all cases the implementation and

test of the CPANs Farm, Pipe and TreeDV 50000

integer numbers were randomly generated to load each

CPAN.

Figure 8. Scalability of the Speedup found for the CpanFarm in 2, 4,

8, 16 and 32 processors

Figure 9. Scalability of the Speedup found for the CpanPipe in 2, 4,

8, 16 and 32 processors

Figure 10. Scalability of the Speedup found for the CpanTreeDV in

2,4,8, 16 and 32 processors

IV. THE CPAN BRANCH & BOUND

Branch-and-bound (BB) makes a partition of the

solution space of a given optimization problem. The

entire space is represented by the corresponding BB

expansion tree, whose root is associated to the initially

unsolved problem. The children nodes at each node

represent the subspaces obtained by branching, i.e.

subdividing, the solution space represented by the parent

node. The leaves of the BB tree represent nodes that

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

cpuset2 cpuset4 cpuset8 cpuset16cpuset32

S
p

e
e
d

u
p

Processors

Speedup of the
CpanTreeDVQS
Amdalh Law for the
CpanTreeDVQS

0.00

2.00

4.00

6.00

8.00

10.00

cpuset2 cpuset4 cpuset8 cpuset16cpuset32

S
p

e
e
d

u
p

Processors

Speedup of the CpanPipeQS

Amdalh Law for the CpanPipeQS

0.00
2.00
4.00
6.00
8.00

10.00

cpuset2cpuset4cpuset8cpuset16cpuset32

S
p

e
e
d

u
p

Processors

Speedup of CpanFarmQS Amdalh Law for the CpanFarmQS

cannot be subdivided any further, thus providing a final

value of the cost function associated to a possible

solution of the problem.

Figure 11. The Cpan Branch & Bound

Three stages are performed during the execution of a

program based on a BB algorithm:

1. Selection: A node belonging to the set of live nodes,

i.e. those not pruned yet, is extracted. Node selection

depends on the strategy search on the live node list,

which was previously decided for its use in the

algorithm.

2. Branch: the node selected in the previous step is

subdivided in its children nodes by following a

ramification scheme to form the expansion tree. Each

child receives from its father node enough

information to enable it to search a suboptimal

solution.

3. Bound: Some of the nodes created in the previous

stage are deleted, i.e. those whose partial cost, which

is given by the cost function associated to this BB

algorithm instance, is greater than the best minimum

bound calculated up to that point.

The ramification is generally separated from the

bounding of nodes on the expansion tree in parallel BB

implementations, and so we followed this approach

using a Farm communication scheme [9]. The expansion

tree, for a given instance of the BB algorithm, is

obtained by iteratively subdividing the stage objects

according to this pattern until a stage representing a leaf-

node of the expansion tree is found, see Figure 11.

The pruning is implicitly carried out within another farm

construction by using a totally connected scheme

between all the processes. The manager can therefore

communicate a sub-optimal bound found by a process to

the rest of the branching processes and thus avoid

unnecessary ramifications of sub-problems. The Cpan

Branch & Bound is composed of a set of Cpans Farm;

see Figure 11, which represent each one a set of worker

processes and one manager, therefore, forming a new

type of structured Farm, the Farm Branch & Bound or

FarmBB, which is also included in the library of

CPANs. All the worker processes of the Farm BB are

executed in parallel, thereby forming the expansion tree

of nodes given by the BB algorithm technique. The

initial problem, or the root of the expansion tree, is

given to the manager process of the initial Cpan Farm,

which is in charge of distributing the work and of

controlling the global calculation progress. It is also

responsible for sending results to the collector of the

Cpan FarmBB, which will display them [9].

Figure 12. Speedup of parallel CpanBB with N=50 cities in 2, 4, 8, 16

and 32 processors

The CPAN based parallel BB algorithm was tested by

solving the TSP with 50 cities and by using the first best

search strategy driven by a least cost function associated

to each live node. The results obtained yielded a

deviation ranging from 2% (2 processors) to 16% (32

processors) with respect to the optimal ones, as

predicted by the Amdalh law for this parallelized

algorithm (for more details see [11]). See Figure 12.

V. CONCLUSIONS

The programming method presented is based on

Corradi’s High Level Parallel Compositions, but

updated and adapted to be used with the C++

programming language and POSIX standard for thread

programming. The CPANs Pipe, Farm, and TreeDV

comprise the first version of a library of classes intended

to be applied to solve complex problems such as the

afore-mentioned parallelization of the Branch & Bound

technique, thus offering an optimal solution to the TSP

NP-Complete problem.

CollectorBB

Manager BB

SO

Stage_1

Collector Manager

FarmBBStage

Stage_1 Stage_2 Stage_n

Collector Manager
FarmBBStage

SO

SO

SO

StageBB_1

StageBB_2

SO

SO

Stage_1 Stage_n

Collector Manager

FarmBBStage

 StageBB_n

0.00

1.00

2.00

3.00

4.00

5.00

cpuset2 cpuset4 cpuset8 cpuset16 cpuset32

S
p

e
e
d

u
p

Processors

Speedup of the Cpan FarmBB_tsp

Amdalh Law for the Cpan FarmBB_tsp

REFERENCES

[1] Brinch Hansen; “Model Programs for Computational Science: A
programming methodology for multicomputers”, Concurrency:
Practice and Experience, Volume 5, Number 5, 407-423, 1993.

[2] Brinch Hansen; “SuperPascal- a publication language for parallel
scientific computing”, Concurrency: Practice and Experience,
Volume 6, Number 5, 461-483, 1994.

[3] Capel M.I., Palma A., “A Programming tool for Distributed
Implementation of Branch-and-Bound Algorithms”. Parallel
Computing and Transputer Applications. IOS Press/CIMNE.
Barcelona 1992.

[4] Capel, M.; Troya J. M. “An Object-Based Tool and
Methodological Approach for Distributed Programming”.
Software Concepts and Tools, 15, pp. 177-195. 1994.

[5] Capel, M.; Rossainz, M. “A parallel programming methodology
based on high level parallel compositions”. Proceedings of the
14th International Conference on Electronics, Communications
and Computers, 2004, IEEE CS press. 0-7695-2074-X.

[6] Corradi A, Leonardo L, Zambonelli F. “Experiences toward an
Object-Oriented Approach to Structured Parallel Programming”.
DEIS technical report no. DEIS-LIA-95-007. 1995

[7] Danelutto, M.; Orlando, S; et al. “Parallel Programming Models
Based on Restricted Computation Structure Approach”.
Technical Report-Dpt. Informatica. Universitá de Pisa.

[8] Rossainz, M. “Una Metodología de Programación Basada en
Composiciones Paralelas de Alto Nivel (CPANs)”, Universidad
de Granada, PhD dissertation, 02/25/2005.

[9] Rossainz M, Capel M. “Design and use of the CPAN Branch &
Bound for the solution of the traveling salesman problem (TSP)”.
Proceedings of the ECMS 2005 – HPC&S. Riga Latvia, 2005.
ISBN: 1-84233-113-2.

[10] Rossainz M, Capel M. “An Approach to Structured Parallel
Programming Based on a Composition of Parallel Objects”.
Congreso Español de Informática CEDI-2005. XVI Jornadas de
Paralelismo. Granada, Spain 2005-2. Editorial Thomson. ISBN:
84-9732-430-7.

[11] Rossainz M, Capel M. “Design and Implementation of the
Branch & Bound Algorithmic Design Technique as an High
Level Parallel Composition”. Proceedings of International
Mediterranean Modelling Multiconference – EMSS 2006.
Barcelona, Spain 2006. ISBN 84-690-0726-2.

[12] Rossainz M, Capel M. “Representation of Branch & Bound
Method like High Level Parallel Compositions (CPANs) with
Parallel Objects”. XXI Jornadas de Paralelismo. SARTECO-
2010. CEDI 2010. Valencia, Spain. ISBN 978-84-92812-49-3.

