
An algorithm for high-density n-dimensional
data categorization in FPGA

Pablo Huerta1 Javier Castillo2 Javier M. Moguerza3 Javier Cano4 and José Ignacio
Mart́ınez5

Resumen— This paper presents a new method for
high density n-dimensional data categorization, which
has been specially designed to be implemented in
hardware. This method allows to easily identifying
groups with similar characteristics (category) from a
large set of individuals with a great number of asso-
ciated variables. Once the categories are established,
any new individual can be easily categorized and get
an event probability (”score”) assigned based on the
group to whom it belongs to. This method’s best
quality is its very hardware-oriented design, as can
be seen in the hardware implementation in a Nallat-
ech PCIe-280 FPGA board, processing gigabytes of
data in seconds. To name a few, some interesting ap-
plication fields are medical diagnosis and credit risk
assessment.

Palabras clave— FPGA, Categorization, ImpulseC

I. Introduction

A ”score” is a number associated to a given indi-
vidual and computed based on its profile. We under-
stand by ”scoring” as the system or mathematical
method (usually based on statistical or operational
research techniques) used to assign scores to individ-
uals. In general, these scores measure the potential
risk associated to individuals. This risk is related to
the final result of making some decisions on the indi-
vidual. For instance, in the banking sector a credit
score is a number obtained after an analysis of a per-
son’s bank profile. Based on this score, the bank will
decide on the approval of a credit or the credit lim-
its on credit cards, see Thomas [7], Martens et al.
[4] or Lee and Chen [6]. In Health Sciences scoring
is used to determine the risk of patients regarding
certain pathologies or diseases. The score may be
calculated based on the patient medical tests or his
clinical record. In this case for example, the score
could measure the risk for a patient of having a cer-
tain disease, see Conroya et al. [2] or Rassi et al. [5],
among others.

The calculus of scores is based on the analysis of
historical data. But, as nowadays the amount of
available data is so huge, there is a need for spe-
cific techniques. So that, data mining is becoming
a relevant source of statistical techniques in order to
design scoring procedures, see for instance Hand et

1Dpto. DATCCCIA, Univ. Rey Juan Carlos, e-mail:
pablo.huerta@urjc.es.

2Dpto. DATCCCIA, Univ. Rey Juan Carlos, e-mail:
javier.castillo@urjc.es.

3Dpto. de Estad́ıstica, Univ. Rey Juan Carlos, e-mail:
javier.moguerza@urjc.es.

4Dpto. DATCCCIA, Univ. Rey Juan Carlos, e-mail:
javier.cano.montero@urjc.es.

5Dpto. DATCCCIA, Univ. Rey Juan Carlos, e-mail:
joseignacio.martinez@urjc.es.

Fig. 1. Ruspini with 4 categories.

al. [3], or Huang et al. [1].
This work is focused on the development of a new

algorithm and associated hardware architecture use-
ful for real-time scoring with large amount of data.
In these circumstances, the software procedures are
not efficient enough to generate real-time results.

The proposed categorization algorithm is de-
scribed in section 3, whilst the Impulse-C language
and the hardware architecture developed to speed
the algorithm execution up are detailed in Sections
4 and 5, respectively. The paper ends with the ex-
perimental results and the conclusions.

II. Related Work

In order to assign a score to a set of data is it
needed to separate them in clusters. The clustering
problem has been studied during many years due its
high number of applications. Given a set of samples,
the problem of deciding how many clusters exist and
assigning each sample to a cluster is a NP-hard prob-
lem.

One of the most commonly used clustering algo-
rithms is the K-means [12] method. For example,
figure 1 shows the performance of the K-Means clus-
tering algorithm over the Ruspini set of data.

K-means is an iterative algorithm. In a first iter-
ation, a predefined number of random centroids are
generated. Then, the distance from each centroid
to every point in the sample is calculated, in or-
der to assign each point to the cluster corresponding
to the nearest centroid. In the following iteration,
the algorithm recalculates the centroids by solving
an optimization problem. Again, the distances from
each point to the new centroids are calculated. The
method converges when two consecutive iterations
provide the same results.

The K-Means algorithm presents two main dis-



advantages, especially when it is going to be used
within high dimensional settings. The first one is
that the number of clusters, which coincides with
the number of centroids, has to be predefined in ad-
vance. The second drawback, given that it is an it-
erative algorithm, is that the number of iterations
needed to converge depends on the quality of the ini-
tial centroids. This becomes a problem mainly when
dealing with large datasets, and therefore the main
reason why there are no FPGA implementations of
the method for real data.

The only work in FPGA is [9], where the K-Means
algorithm is used to colour an image in order to find
regions on it.

There are extensions of the K-Means algorithms
and other methods to calculate the number of clus-
ters [13], but they have the same problem: they
are not suitable for large sets of data, and they are
even more complex and take longer execution times
than the original K-Means method. In this work, we
propose a new algorithm that, for a n-dimensional
dataset, is able to calculate the number of clusters
and assign the data to them in a linear time. The
algorithm has been designed so that its FPGA hard-
ware implementation is possible. The implementa-
tion is suitable to have a quick estimation of the
clusters. This is particularly important in real time
environments, for instance, when a scoring has to be
assigned to new individuals, as the scoring depends
on the cluster the individual belongs to.

III. Proposed Categorization Algorithm

The main goal of this work is to design and imple-
ment a new algorithm for n-dimensional data cate-
gorization that can easily assign scores to every cate-
gory based on event probabilities. From the raw data
it is possible to find similarities between the data and
create categories so that the individuals can be clas-
sified. New individuals are analysed and assigned to
existing groups with similar properties (disease prob-
ability, credit risk index, etc.). These characteristics
make the algorithm a powerful tool for early event
detection. It is also important to mention that the al-
gorithm complexity is linear, therefore the algorithm
is very appropriate to process large data sets.

The proposed algorithm is not a general solution
to the clustering problem. The clustering problem is
a NP-hard problem and it has not got a unique so-
lution. Standards techniques have two major draw-
backs, first one they are very slow and not suitable
for high dimensional data. The second one is that
the number of clusters must de defined by the user
prior to the algorithm execution. In a real scenario
with many Gigabytes or even Terabytes of data is it
impossible to the user to set the number of clusters.
In this context an algorithm that returns the num-
ber of clusters and a possible classification in a linear
time is very relevant.

One good example of application for this scoring
algorithm is early cancer detection. It should be
very useful for the medical staff to be able to classify

their big number (thousand or millions of patients
with hundreds of variables) of patients into groups
(knowing not only if they have previously suffered
the disease, but also from the big number of medi-
cal parameters in their records) in order to know in
advance to what category a new patient should be
assigned to and consequently treat the patient.

When we want to find the probability of a new
patient to develop a cancer, we have to compute the
distance between this new patient and the already
computed categories, assigning the new patient to
the closest category and, as a consequence, its prob-
ability.

The distance function is the key factor for a good
data categorization; therefore, it is compulsory to in-
volve the area experts to choose the proper function
for each problem.

For instance, disease detection has to manage
patient information such as address, age, height,
weight, blood type, blood pressure, genetic predis-
position, other diseases previously suffered, etc.

An accurate distance function should be able to
find patterns about the disease occurrence, for ex-
ample: people living close to each other with similar
age will belong to the same category.

Many problems can be solved in terms of the
Euclidean distance computation, but many others
might have very complex distance functions (analyt-
ical or non-linear table based). Generally speaking,
any function should help to know how close an indi-
vidual is to each of the groups.

The algorithm is divided into two different pro-
cesses: 1) category creation: where similarities are
detected from the raw data, and 2) categorization
of new individuals: where an incoming individual is
assigned to an existing category.

A. Category creation

The category creation problems consist on: given a
set of P individuals calculate the different categories
that may exist based on the statistical characteristics
of the individuals, and assign each individual to one
of the categories. The characteristics of an individual
are defined by a set of N variables. A category exists
when many individuals share some similar character-
istics. An example with individuals with 2 variables
(dimension 2) is shown in figure 2, where 4 different
categories can be seen.

The process of deciding on how many categories
exist is an iterative process of N iterations, where N
is the number of variables defining the individuals.
On each iteration new categories may be detected
and individuals are accordingly assigned to them.

In order to detect the different existing categories
the process uses a different distance function FDisti
in each iteration. After N iterations, all the cat-
egories have been detected and every individual X
has been assigned to one of them. The algorithm is
shown below.

for i = 1→ Num Dimensions do
for k = 1→ Num Categories do



Fig. 2. Example with 4 categories.

for j = 1→ Length(Categoryk) do
Dj ← FDisti(Xj)

end forhisto ← histogram(Dj)
histofiltered ← filter(histo)
modalcategories detected ←
maxs(histofiltered) Create new detected
categories
for j = 1→ Length(Categoryk) do

add Xj to the category where Dj is closest
to the maximun

end for
end for

end for
The different steps for a two-dimensional example

are explained below. The two-dimensional example
is used is this work to graphically show the algorithm
operation. However the extension to n dimensions is
trivial.

In the first step the process computes the distance
of each individual to a reference point, usually the
Cartesian origin. On extensions of the algorithm we
are working selecting different origin points and cal-
culating them in parallel to find out the point that
gives the best view of the data.

Depending on the nature of the data a different
distance function must be selected. The election of
this function is a key decision because the final re-
sults strongly depend on it. Many real problems can
be solved with the Euclidean distance; therefore this
work focuses on a hardware architecture that solves
the problem using this distance. Several other prob-
lems can be solved using the same hardware archi-
tecture just modifying the distance calculation block
with the appropriate function for each specific prob-
lem.

For a two dimensional problem the Euclidean dis-
tance is:

Di =
√

x2 + y2 (1)

The obtained distances are discretized and used
for computing the histogram. The number of statis-
tical modes in the histogram corresponds with the
statistical modes and it is also the number of cate-
gories in the set of individuals. Figure 3 shows the
histogram count for the data set example where three
categories have been detected.

Fig. 3. Distance histogram count.

Fig. 4. Filtered histogram signal.

The number of statistical modes of the histogram
is computed in terms of the local maximums of the
histogram, but before that, a low pass filter elimi-
nates the noise in the histogram (figure 4) so that
the local maximums are cleared.

Once the categories have been detected and cre-
ated, every individual must be assigned to one of
them. This is done by comparing the distance of the
individual to the centroid of each of the statistical
modes found previously, given by the maximums in
the histogram, and assigning the individual to the
closest one. Figure 5 shows the categorization ob-
tained in this first step, where 3 categories have been
detected. Once every individual has been categorized
in one of the categories, the second step begins.

The second step is similar to the first one, but
this time each category of the first step is separately
analyzed in order to find out if can be split into more
that one category.

Now, the analysis is carried out with the angle
of each individual as the distance function instead
of the distance to the origin. Figure 6 shows the
angle analysis for the green category of figure 5 whilst
Figure 7 shows the final categorization of the initial
set of individuals.

Once all the initial set of individuals has been pro-
cessed and all of the individuals have been assigned
to a category, the mean individual value of each cat-
egory is computed so that can be used in the cate-
gorization of new individuals.



Fig. 5. Individuals assigned to each category.

Fig. 6. Angle analysis for one of the categories.

Fig. 7. Final categorization of the set of individuals.

B. Categorization of new individuals

When a new individual arrives to the system it
has to be categorized in one of the categories, but
it does not mean to repeat the whole recently de-
scribed process. Instead of that, the distance of the
new individual is compared with the mean individ-
ual’s value of each category and then assigned to the
category with the smallest distance value. When the
arrival of new individuals alters the statistical char-
acteristics of the global population the whole process
of category creating have to be repeated to establish
the new categories.

IV. Impulse C

The hardware architecture has been designed us-
ing Impulse-C from Impulse Technologies. ImpulseC
is a C-based language that allows the design of hard-
ware systems using a full codesign methodology. The
system is described using C language and a set of

new functions and pragmas to describe the intrin-
sic parallelism of the hardware. Once the system is
validated with the simulations and a target platform
is selected, ImpulseC generates the whole set of files
(VHDL, C, and platform configuration files) needed
to automatically synthetize and compile the design
for the platform. This work is part of a much broader
project and, although the very powerful Nallatech
PCIe-280 board was not supported by ImpulseC, we
developed a full BSP (Board support Package) in or-
der to complete the design flow. This package is now
officially available for all ImpulseC users.

V. Hardware Architecture

The prototype platform is made up of a Nallatech
PCIe-280 board attached to a host PC. The Nallat-
ech PCIe-280 is a PCI-Express accelerator card with
a large Xilinx FPGA directly coupled to 2 different
types of on-board memory: two 500 Mbyte banks of
DDR2 SDRAM and two 9 Mbyte banks of QDR-II
SRAM. The board is connected to the host through
a PCIe x8 interface that sends and receives data up
to 500 MB/s (effectively measured). The hardware
architecture implemented in the Nallatech PCIe-280
was optimized to work with bidimensional data.

The system implemented in the board is shown in
figure 8.

All the memory banks can be accessed by the host
through the PCI-Express interface, and by the ac-
celerator through the memory controller. The two
available DDR2 memory banks are used by the host
to send the data of the individuals to the accelera-
tor that can access this memory in 128 bit chunks.
When one of the banks is filled up by the host, the
accelerator starts to process the individuals whilst
the host writes more individuals in the second bank,
therefore hiding some memory latency.

The data is read from the DDR in bursts so that
almost 1 data per cycle can be processed. The data
is converted from floating-point to fixed point to be
able to use the CORDIC core, because the distances
can be normalized for the required precision. There
is no problem attached to this precision change be-
cause the output is just used to generate a histogram.

The two available SRAM blocks are written and
read by the accelerator to get the algorithm results.
The results are one entry with each individual and
its category.

The blocks labeled step 1 and step 2 in figure 8 im-
plement the distance functions and histogram com-
putations needed in each of the steps.

Each block can calculate several distances in par-
allel while keeping the histogram updated (Figure 9).

For the example with two variables per individual,
the distance function in step 1 is a square root and in
step 2 is arctan, with also the multipliers and adders
that compute the Euclidean distance. Both functions
have been implemented using a pipelined CORDIC
core. Because the DDR memory data width is 128
bits, a total number of up to 4 values can be read
in parallel from the memory, therefore 4 CORDIC



500 MB

DDR2

500 MB

DDR2

Memory Controller

Control 

Unit

Step 1 Step 2

PCI EXPRESS

Filtering 

and modals 

search

9 MB

SRAM

Fig. 8. System architecture.

hardware cores are implemented to speed the com-
putation up.

The histogram calculation needs to process those
4 elements in parallel to be optimal. For this pur-
pose an architecture similar to the one described in
[8] has been used. This architecture also works in a
pipelined fashion. Once all the data has been pro-
cessed it is time for the filtering and modals search
block to detect which categories may exist in the
data. The filtering has been implemented as a FIR
filter of order 3.

After detecting the existing categories, all the in-
dividuals are read again from memory and the dis-
tance of each individual is compared with each cat-
egory, assigning the individual to the category with
the smallest difference. For this, the same blocks are
reused and all the comparisons are made in parallel
(Figure 9). Because of the parallel comparisons and
the hardware architecture and constraints, the max-
imum number of different categories the system can
deal with is 8. The results are stored in the SRAM
memory for being read by the host. When one step
is finished, the host starts reading the results and
copying the data needed for the following step of the
algorithm. A control unit synchronizes all the com-
munications within the blocks, and also within the
system and the host PC. Extending the system for a
higher number of dimensions is trivial: only requires
minor changes in the control unit, and implementing
the appropriate distance function for each new step
added.

VI. Experimental Results

For the sake of comparison, the K-Means algo-
rithm was executed for the same data sets to evalu-
ate the speedup of the proposed algorithm. As said
in the Introduction, the K-Means algorithm is not
deterministic and has to converge to a solution in
a number of iterations that depends of the initially
random selected centroids. For a bidimensional data,
like the one used in the experiments, the number of

FDist FDist FDist…..

Histogram

To filtering To SRAM

modalsCategory 

assignment

Fig. 9. Step architecture.

Size Proposed K-Means Speed Up
125MB 3,69s 7,92s 2,14x
250MB 7,44s 20,16s 2,71x
500MB 15,58s 55,57 3,56x
1000MB 29,37s 58,44s 1,98x
2000MB 61,26s 145,18s 2,37x

TABLE I

K-Means execution time for data sets compared

against software implemetation of the proposed

algorithm

iterations to solve the problem goes for 4 to 31, with
a statistical mode of 16 iterations.

The execution time for K-Means in this case is:
The proposed algorithm is not only up to 3 times

faster than the K-Means algorithm, but also calcu-
lates the number of clusters (not calculated by the
K-Means algorithm).

The algorithm was implemented and test in the
real hardware and compared with the software im-
plementation to evaluate the performance. The com-
puter host for the Nallatech board was an Intel i7
processor with 4GB of RAM memory. The whole
system spends a 8% of the Virtex5 330LXT FPGA
resources and currently runs at 100 MHz. Ran-
dom data sets with Gaussian distribution were gen-
erated as input to the system and saved to files with
several sizes (125MB,250MB, 500MB, 1000MB and
2000MB) constrained to the 500MB size value of the
DDR RAM on board.

The same set of experiments was test with the
Impulse-C model, i.e. the C golden model of the sys-
tem showing no performance loss with the ANSI-C
model.

Size Software Hardware Speed Up
125MB 3,69s 1,96s 1,87x
250MB 7,44s 3,93s 1,89x
500MB 15,58s 7,71s 2,02x
1000MB 29,37s 16,9s 1,73x
2000MB 61,26s 32,17s 1,90x

TABLE II

Total execution times for hardware and software.



Size Software Hardware Speed Up
125MB 2,10 0,29s 7,08x
250MB 4,27s 0,59s 7,18x
500MB 9,39s 1,19s 7,88x
1000MB 15,48s 2,38s 6,5x
2000MB 32,07s 4,73s 6,78x

TABLE III

Processing times for hardware and software.

The results prove a 2x speedup of the FPGA hard-
ware implementation when compared with the soft-
ware implementation for a bi-dimensional problem.

It is important to notice that the hardware perfor-
mance is limited by the time needed to read the data
from the hard disk. Table 2 presents the actual pro-
cessing time when removing the hard disk read delay,
assuming that the data is already loaded in the RAM
memory. The hardware processing time includes the
data transfer from the host to the board using the
DMA and the FPGA processing time. It is very im-
portant to notice that the speedup in the process-
ing time comes for the use of the arctan function in
the distance calculation, which is much faster in the
CORDIC engine of the FPGA than in the host pro-
cessor. If more sophisticated distance functions are
needed to solve more complex problems the increase
of performance (and speedup) will be substantially
higher.

Due to the algorithm, and the transfer and pro-
cessing times are linear, the speedup will keep con-
stant for more dimensional computations. This
means that for high execution times the speedup re-
sults in a significant execution time reduction.

VII. Conclusion

A novel algorithm for high-density n-dimensional
data categorization was presented. The algorithm
linear complexity is very appropriate to process large
amounts of data. Although the algorithm perfor-
mance is good enough in software, the hardware ar-
chitecture implemented in the Nallatech PCIe-280
board results in a substantial speedup increase when
compared to the software version. As a future work,
the algorithm will be test in a real problem envi-
ronment (disease preventive diagnose or credit risk
evaluation) with emphasis in finding the best dis-
tance functions to properly split big data sets into
categories. We hoped that more complex distance
functions in n-dimensional data will prove the ben-
efits of the hardware implementation because of the
much higher and better speedups.

VIII. Acknowledgment

We must particularly thank Impulse Technologies,
Nallatech and Xilinx for their support.

Referencias

[1] Cheng-Lung Huang, Mu-Chen Chen, Chieh-Jen Wang,
Credit scoring with a data mining approach based on sup-

port vector machines, Expert Systems with Applications
33 (2007), 847-856

[2] R.M. Conroya, K. Pyöräläb, A.P. Fitzgeralda, S. Sansc, A.
Menottid, G. De Backere, D. De acquere, P. Ducimetièref,
P. Jousilahtig, U. Keilh, I. Njølstadi, R.G. Oganovj, T.
Thomsenk, H. unstall-Pedoel, A. Tverdalm, H. Wedeln,
P. Whincupo, L. Wilhelmsen, Estimation of ten-year risk
of fatal cardiovascular disease in Europe: the SCORE
project, European Heart Journal (2003) 24 (11): 987-1003.
Nan-Chen Hsieh, An integrated data mining and behav-
ioral scoring model for analyzing bank customers, Expert
Systems with Applications 27 (2004), 623-633

[3] D. J. Hand, H. Mannila, P. Smyth, Principles of data min-
ing, The MIT Press, 2001.

[4] D. Martens, B. Baesens, T. Van Gestel, J. Vanthienen,
Comprehensible credit scoring models using rule extrac-
tion from support vector machines, European Journal of
Operational Research 183 (2007), 1466-1476

[5] Anis Rassi, Jr., Anis Rassi, William C. Little, Sergio S.
Xavier, Sergio G. Rassi, Alexandre G. Rassi, Gustavo G.
Rassi, Alejandro Hasslocher-Moreno, Andrea S. Sousa and
Mauricio I. Scanavacca, Development and Validation of a
Risk Score for Predicting Death in Chagas’ Heart Disease,
New England Journal of Medicine; 355 (2006), 799-808

[6] Tian-Shyug Lee, I-Fei Chen, A two-stage hybrid credit
scoring model using artificial neural networks and mul-
tivariate adaptive regression splines, Expert Systems with
Applications 28 (2005), 743-752

[7] Lyn C. Thomas, A survey of credit and behavioural scor-
ing: forecasting financial risk of lending to consumers,
International Journal of Forecasting 16 (2000), 149-172

[8] Cadenas, J., Sherratt, R. S. and Huerta, P., Parallel
pipelined histogram architectures. Electronics Letters, 47
(20) (2011), 1118-1120

[9] Wang, Xiaojun and Leeser, Miriam, K-means Cluster-
ing for Multispectral Images Using Floating-Point Di-
vide. Proceedings of the 15th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines,
FCCM ’07, (2007), 151-162

[10] MacQueen, J. B., Proc. of the fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability. In Some
Methods for Classification and Analysis of MultiVariate
Observations, University of California Press, (1967), 281-
297

[11] Pelleg, Dan and Moore, Andrew W., X-means: Extend-
ing K-means with Efficient Estimation of the Number
of Clusters, Proceedings of the Seventeenth International
Conference on Machine Learning, (2000), 727-734

[12] Mardia K.V., Kent J.T. and Bibby J.M., Multivariate
Analysis, Academic Press, 1979

[13] Moguerza J.M., Muñoz A. and Mart́ın-Merino M., De-
tecting the number of clusters using a Support Vector Ma-
chine Approach, Lecture Notes in Computer Science, Vol.
2415, pp. 763-768, Springer Verlag, 2002.


