
 
  Abstract -- In this paper we perform an analysis of the 
optimal parameters values for a genetic algorithm. This 
genetic algorithm will predict the sign of wavelet 
coefficients based on the sign information of an Intra-band 
neighborhood in the context of image encoding 
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I. INTRODUCTION 

 N this work we are looking for the optimal 
parameters for a wavelet image compressor sign 

predictor based on a genetic algorithm. This kind of 
image compressor is based in the use of a mathematical 
transform called Discrete Wavelet Transform (DWT). 
Wavelet transforms have proved to be very powerful 
tools for image compression, since many state-of-the-art 
image codecs, including the JPEG2000 standard [1], 
employ DWT into their algorithms. One advantage of 
the wavelet transform is the provision of both frequency 
and spatial localization of image energy. The image 
energy is compacted into a small fraction of the 
transform coefficients and compression can be achieved 
by coding these coefficients. The energy of a wavelet 
transform coefficient is restricted to non-negative real 
numbers, but the coefficients themselves are not, and 
they are defined by both a magnitude and a sign. Shapiro 
stated in [2] that a transform coefficient is equally likely 
to be positive or negative and thus one bit should be 
used to encode the sign. In recent years, several authors 
have begun to use context modeling for wavelet sign 
coding [3][1][4], showing that despite the 
equiprobability of wavelet sign values, some sign 
correlation can be found among wavelet coefficients, 
resulting in overall compression ratio improvements. In 
a previous work [5] we have observed that the sign of a 
wavelet coefficient may be strongly correlated with the 
sign of some neighbor coefficients.  

On the other hand, Genetic algorithms (GA) were first 
introduced by Holland in [6] and they are nowadays well 
known techniques for finding nearly optimal solutions of 
very large problems and also, they have been used in 
image processing [7][8]. In a genetic algorithm, the 
evolution usually starts from a population of randomly 
generated individuals and happens in generations. In 
each generation, the fitness of every individual in the 
population is evaluated by means of a cost function that 
determines the optimal degree we are looking for (i.e 
compression rate). Multiple individuals are 
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stochastically selected from the current population 
(based on their fitness), and modified (recombined and 
possibly randomly mutated) to form a new population. 
The new population is then used in the next iteration of 
the algorithm. Commonly, the algorithm terminates 
when either a maximum number of generations has been 
produced, or a satisfactory fitness level has been reached 
for the population. In this paper, our aim is to analyze 
every possible simulation of the genetic algorithm and 
find its optimal parameters. 

The remainder of the paper is organized as follows: in 
Section 2 we define the optimization problem and 
propose the genetic algorithm that matches the problem 
definition. Section 3, we analyze the simulation results. 
Finally, in Section 4 we draw some conclusions. 

II. WAVELET SIGN PREDICTION: PROBLEM 

STATEMENT 

To estimate sign correlation in a practical way, we 
have applied a 6-level Dyadic Wavelet Transform 
decomposition of the source images. As the sign 
neighborhood correlation depends on the subband type 
(HL, LH, HH), we have used different neighbors 
depending on the subband type and the number of 
neighbors we have utilized, as we tested the algorithm 
with 4 neighbors. So, for the HL subband, the neighbors 
used are N (North), NN (North-North), W (West) and 
WW (West-West). Taking into account symmetry, for 
the LH subband, those neighbors are W, WW, N and 
NN . For the HH subband they are W, N, NW (North-
West) and NNWW (North-North West-West), 
exploiting the correlation along and across the diagonal 
edges. This leads us to a maximum of 34 Neighbor Sing 
Patterns (NSPs) for each subband type. After running 
the genetic algorithm for each subband type, we obtain 
the sign prediction table that contains the sign 
predictions for every pattern. So, when coding the sign 
of a wavelet coefficient in a particular subband, first we 
will get the sign value of the corresponding neighbor set 
in order to form the actual pattern. Then, we will 
compare the sign prediction for that pattern with the 
current coefficient sign and we encode whether it is 
correct or not. Thus, the performance of a binary entropy 
encoder will depend on the behavior of our sign 
predictor, the higher the success prediction ratio the 
higher the compression rate.  

A. Genetic Algorithm Definition 

The genetic algorithm created follows the classic 
structure for this type of algorithms: population 
initialization, population evaluation and new population 
generation through the classification of individuals using 
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a fitness function and the use of crossover and mutation 
operators to create new individuals. Then we need to 
create a population (universe) of individuals that during 
the evolution process will improve their goodness in 
base to a fitness function that will determine their 
quality. The genetic information of one individual is the 
set of sign prediction values of every NSP[k]. For our 
purposes we will define the fitness function in such a 
way that its result indicates the sign prediction 
performance of one individual for the set of images. In 
other words, the fitness function will estimate the 
compression rate of the sign prediction encoding that 
would be achieved if the prediction table defined by this 
individual is used to encode the image. Finally, single 
point crossover is used in all variations where the locus 
point to split the parent gene is randomly selected. On 
the other hand, the mutation policy inverses the 
prediction value of a randomly chosen gene. Also, two 
best individuals survive to the next generation and they 
cannot be modified by the mutation operator. 

Each individual is represented by a binary vector 
where its elements represent a combination of signs 
from a predefined neighborhood set of coefficients, and 
the stored values into these elements correspond to the 
sign prediction for the coefficient (binary value). The 
size of this vector depends on the number of neighbors 
that conforms the neighborhood. The greater the number 
of neighbors considered, the greater then number of sign 
combinations, namely 3n being n the number of 
neighbors, since the possible sign values of neighbor 
wavelet coefficients are ternary values (positive, 
negative or non-significant).  

As our aim is to find which values in the execution of 
the algorithm provide us the optimal fitness, we have 
run a battery of tests, namely, we have used this sets of 
values for the algorithm parameters: 

 
• Mutation probability: 0.01, 0.025, 0.05, 0.075, 0.1, 

0.25, 0.5, 0.75, 1. 
• Population number: 300, 280, 260, 250, 220, 200, 

180, 160, 150, 140, 120, 100, 80, 60, 50, 40, 20, 10. 
• Number of rounds: 100, 200, 300, 400, 500, 1000, 

3000, 5000, 10000. 
Due to time constraints, all the simulations were done 

only on one image, the first one of the Kodak image set 
[9]. 

  
The program implementation of the algorithm, written 

in pseudocode, is as follows: 
 
Individual Structure{ 
sign[NSP];//Prediction array for each neighbor sign pattern     

    //combination 
fitness;        //indicates the goodness of the individual 
}Individual universe[NUM-POPULATION]; //Individual array 
 
function SignPrediction (SubbandType, ImageFiles, mutation 

Probability) 
//Initialization phase: sign[NSPs]= random(POSITIVE/NEGATIVE) 
Initialize (universe, NUM-POPULATION, NSP); //we evaluate each 

//individual of the universe. For each //image in ImageFiles 
EvaluateFitness (SubbandType, ImageFiles, universe); 
for i=0 to NUM-ITERATIONS 
//Select the best two individuals from universe for survival. 
 best = SelectBestIndividuals (2); 
 //Crossover 
 crossPoint=random (NSP); 

 //randomly selects a father and a mother to mix its gens 
 SelectFatherAndMother (random (NUM-POLUTATION)); 
 universe = MergeFatherAndMother (crossPoint); 
 Mutation (universe, mutation Probability); 
 universe = universe + best; 
 EvaluateFitness (SubbandType, ImageFiles, universe); 
end 
//Finally get the best individual. 
best = SelectBestIndividuals (1); 
end of function 

III. PERFORMANCE EVALUATION 

A. Convergence Evaluation 

The way we are going to determine the GA optimal 
parameters in this chapter is by studying its convergence 
based on them. So, for each subband, we will analyze 
the number of simulations that don't converge to the 
maximum value attainable within that simulation 
framework and, thus, we will obtain a broad view of the 
parameters' adequate values. 

 

 
Fig. 1. Percentage of convergence based on mutation probability 

 
As we can see in Fig. 1, using a mutation probability 

value higher than 0.05, the GA does not converge even 
for a high number of rounds. Based on this, we can 
deduce the optimum value to use would be 0.01, in 
terms of convergence. 

Regarding population amount parameter, the results on 
Fig. 2 show that population number does not have an 
important effect in the convergence of the algorithm, it 
probably does affect the overall fitness obtained, which 
we will analyze further in this article. 

 

 
Fig. 2. Percentage of convergence based on population number 

 
Lastly, we check the effect of the number of rounds in 

the convergence of the GA. Logically, as we increase 
the number of rounds the amount of simulations that 
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converge increase, although we can assume the low 
percentages are due to the number of jobs done with a 
high mutation probability because as we have already 
seen, it makes the GA oscillate around the optimum 
solution (see Fig. 3). 

 

 
Fig. 3. Percentage of convergence based on number of rounds 

B. Fitness Evaluation 

Now that we have studied the convergence properties 
of the GA based on its input parameters, we can analyze 
the overall fitness obtained as a function of them. We 
will do as in the previous section; we will separate the 
results in three charts, with three different data sets in 
each one, one for each subband type. Thus, we start with 
the mutation probability. As we can observe on Fig. 4, 
as the mutation probability decreases, so does the fitness 
obtained, with the exception of the mutation probability 
value of 1, which suffers a slight increase. This is due to 
a greater number of NSPs changing as the mutation 
probability increases, making the fitness value to 
oscillate not allowing the convergence. 

 

 
Fig. 4. Fitness based on mutation probability 

 
In Fig. 5 we show the fitness value as a   function of 

the population number. We can conclude that the 
population number does not affect the maximum fitness 
value obtained. 

Finally, in Fig. 6 we find that the fitness value of the 
GA is not affected by the number of rounds, as it 
reaches its maximum for a hundred rounds in certain 
conditions. 

 

 
 

Fig. 5. Fitness based on population number 

 

 
 

Fig. 6. Fitness based on number of rounds 

 
Now, having all the results we can easily see that the 

defining parameter for convergence and fitness is the 
mutation probability. We have checked, also, that the 
single value that produces the highest fitness and 
convergence ratio is 0.01, so, in the next section we are 
going to center in the results of the simulations run with 
that probability value and see if we can fine tune the GA 
even more. 

IV. TUNING THE GENETIC ALGORITHM  

In fact, for this image (as we must remember every 
result we have drawn only applies to the image we have 
analyzed), using 0.01 as the mutation probability almost 
always produces the optimum value attainable. As such, 
we do not even need to plot the results, we can just 
specify which sets of parameters do not produce the 
optimum fitness value or do not converge. Tables I, II, 
and III show these parameters values for subbands HH, 
HL and LH respectively. 

 
TABLE I 

HH SUBBAND SETS OF PARAMETERS THAT DO NOT CONVERGE OR 

PRODUCE OPTIMUM FITNESS 

Population 
Number 

of rounds 
Fitness 

Maximum 
Fitness 

80 100 84072 84074 

100 100 84072 84074 

10 200 84054 84074 

20 100 84036 84074 

10 100 83922 84074 
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TABLE II 

HL SUBBAND SETS OF PARAMETERS THAT DO NOT CONVERGE OR 

PRODUCE OPTIMUM FITNESS 

Population Number 
of rounds 

Fitness Maximum 
Fitness 

20 100 95656 95684 
10 200 95628 95684 

 

TABLE III 

LH SUBBAND SETS OF PARAMETERS THAT DO NOT CONVERGE OR 

PRODUCE OPTIMUM FITNESS 

Population Number 
of rounds 

Fitness Maximum 
Fitness 

10 300 112762 112770 
40 100 112760 112770 
50 100 112738 112770 
10 100 112680 112770 
20 100 112662 112770 

 

A. Neighborhood Increment 

To further expand our analysis, now we run the GA 
with the optimal parameters we found before (0.01 as 
mutation probability, 100 as population number and 100 
as number of rounds) but, this time, we change the 
number of neighbors to be analyzed. We are going to 
use the neighborhood showed in Table IV. 

 

TABLE IV 

NEIGHBORS SETS USED 

Number of  
neighbors 

Subband 
type 

Neighbors used 

3 

HH N, W, NW 

HL N, NN, W 

LH W, WW, N 

4 

HH 
N, W, NW,         
NNWW 

HL W, WW, N, NN 

LH N, NN, W, WW 

5 

HH 
W, N, NW, 
NNWW, 

NNNWWW 

HL 
N, NN, NNN, W, 

WW 

LH 
W, WW, WWW, 

N, NN 

 
In Fig. 7, we compare the results, in normalized fitness 

(see Eq. 1) for the HH, HL and LH subbands based on 
the different neighbors sets. 
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, 	

	∀	              (1) 

 
Where N, M are the image dimensions, SC , K   is the 

sign prediction for NSP (k) and SC ,  is the sign of 
wavelet coefficient C , . The division by N x M is 
performed to normalize the fitness function because the 
different evaluated images could be of different sizes. 

 As shown in Fig. 7, for HH and LH subbands, we can 
clearly see that fitness value increases as the number of 
neighbors increase. Even more, with five neighbors, the 
fitness obtained suffers a significantly increase, being 

this option the best choice for these subband types. 
Contrary to HH and LH subbands, and for this image, 
the best choice for HL subband is to use only three 
neighbors. This effect is mainly due to the low amount 
of vertical frequencies in this image, and so, there are 
less significant coefficients to exploit the vertical 
correlation between them. 

 
 

Fig. 7. Normalized fitness for HH,HL and LH subbands based on 
number of neighbors 

V. CONCLUSIONS AND FURTHER WORKS 

As we have seen and already stated, this was a limited 
analysis, due to time and processing power constraints, 
so this results should be taken as a first approximation to 
a broad analysis of the GA as an effective sign predictor. 
The single and most important conclusion we can draw 
from this results is that the defining parameter in the 
convergence and fitness of the GA is the mutation 
probability. And so, using 0.01 as mutation probability 
and avoiding the parameter sets we have specified in 
section 3.3, we can assure the best results for image 01 
of the Kodak image set are obtained. 

Furthermore, we have determined that, based on the 
type of subband to analyze, there is an optimum 
neighbors set to use, namely, three neighbors for the HL 
subband and five for the HH and LH subbands. 

As future work, we will continue fine tuning the 
algorithm and, with that objective in mind, the next step 
is to apply the same type of analysis to a broader set of 
images from the Kodak image set, with the aim of 
producing general results which can be applied to an 
image codec, which is the ulterior objective of the 
development of the GA. 
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