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Abstract— Many-core chip designs are the current
manufacturing trend for high-performance comput-
ing.

An emerging problem is on-chip network conges-
tion, due either to several traffic classes requesting
the same resources (e.g. memory controllers) or to
bursty traffic interfering with other flows.

In this paper we propose BAHIA, which enables
dynamic separation of bursty traffic from non-bursty
one, thereby removing all the contention effects of
bursts with a minimal impact on network overhead
and with a marginal increase in area requirements.
Results demonstrate a robust and effective split of
traffic, leading to non-bursty traffic to achieve the de-
sired low latencies even in bursty-prone conditions.
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I. Introduction

TH e high-performance computing domain is tak-
ing advantage of the inclusion of multicore so-

lutions in the form of Chip Multiprocessor (CMP)
and System-on-Chip (MPSoC) systems. As the in-
tegration scale goes further, more cores, nodes, or
processing units are included in the same chip.
Both design platforms, CMPs and MPSoCs, rely

on an interconnection network infrastructure that
provides the communication between all the process-
ing nodes. This must be a high-bandwidth, low-
latency network to avoid slowing down processors
while waiting for remote data.
As technology advances, we will have more com-

plexity in the chip, leading to more devices. Also,
specialization will drive the inclusion of dedicated
devices as accelerators, encoders, DMA devices, etc.
This heterogeneity and the increasing number of
components will drive a change in the traffic present
in those devices. We can expect bursts of traffic flow-
ing from device to device, at intermitent and unpre-
dictable frequencies. This kind of traffic may create
temporary hotspots where the traffic is concentrated,
thereby leading to the appearance of network con-
gestion that is likely to have a negative impact on
the rest of the traffic. As we show in this paper,
efficiently dealing with the problems derived from
congestion can significantly improve the overall chip
performance.
Indeed, in this paper we present BAHIA (Burst-

Aware HoL-blocking Injection Avoidance), a mecha-
nism that dynamically detects bursty traffic in the
network, then isolating the burst and thus guar-
anteeing that non-bursty traffic is unaffected. The
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BAHIA method is targetted to lightweight NoC de-
signs, where transmission latency is of outmost im-
portance, thus, no additional mechanisms built in-
side the network are added to the switches (i.e. con-
gestion control mechanisms, traffic separation). In-
deed, we follow the same approach as [1], so moving
the complexity to the network interfaces (NIs).
The rest of this paper is organized as follows: Sec-

tion II presents the related work. In Section III we
thoroughly describe the key aspects of the BAHIA
mechanism. Next, in Section IV, we detail the eval-
uation scenarios and the results obtained, and finally
in Section V, we present some conclusions and future
work.

II. Related work

In [2] and [3] the importance of bursty traffic in
the congestion control framework is pointed out. In
that sense, the BAHIA method described in the next
section addresses the negative effects of bursty traf-
fic.
In [4] the problems derived from bursty traffic are

addressed by increasing buffer size in order to get
room enough to absorb bursts. This approach is rel-
atively expensive in terms of silicon area and power,
and, as reported in the article, with non-bursty traf-
fic this results in a suboptimal utilization of the re-
sources. In addition, it is difficult to predict burst
sizes, hence probably a burst may overflow buffers,
then resulting in contention. In BAHIA, however,
buffer size is not modified as bursty traffic is sepa-
rated at sources.
In [5] a solution to reduce the latency in worst-case

bursty traffic is proposed. However, this mechanism
is based on temporarily ejecting packets and later re-
injecting them with a priority-based approach. This
achieves good results as it helps in the worst case,
but at the cost of increasing latency of newer packets.
Moreover, if we consider a scenario with several vir-
tual networks, this mechanism requires three queues
per virtual network at each node, thus becoming an
expensive solution in an NoC context.

III. BAHIA Description

BAHIA (Burst Aware HoL-blocking Injection
Avoidance) provides a method to, at runtime, isolate
detected bursty traffic in a network, in order to pre-
vent bursts from causing HoL-blocking. Detection of
bursty traffic is performed at any end-node receiving
a burst. All the end-nodes are then notified of this
detection, so that thereafter the bursty traffic can be
identified in order to be separated from non-bursty
traffic, thereby avoiding the HoL-blocking that the



former could produce to the latter. BAHIA makes
use of virtual networks to separate traffic, hence
BAHIA requires at least two virtual networks: the
“default” virtual network, for non-bursty traffic, and
an extra virtual network for bursty traffic.

A. Burst detection

As mentioned above, the detection of bursty traffic
is performed at the end-node receiving the burst. For
that purpose, each end-node periodically calculates
its rate of received traffic. The traffic rate is calcu-
lated every “polling interval” (PI) cycles, which is a
predefined parameter of BAHIA. If that rate exceeds
a given high-threshold (HT) value, this end-node will
notify the other end-nodes that it is receiving bursty
traffic. Similarly, any end-node notifying bursty traf-
fic must be able to detect the end of the burst. For
that purpose, the traffic reception rate is compared
with a given low-threshold (LT) value. Accordingly,
in this case, all the end-nodes will be notified.

B. Burst notification

In order to notify of a traffic burst to all the end-
nodes, BAHIA makes use of a simple dedicated sig-
naling network (Burst Notification Network, BNN).
Basically, the whole BNN is a set of one-bit-wide
overlapped control networks, each one managed by
a specific end-node. Each control network bit con-
nects its manager end-node to the rest of end-nodes,
the former being the only one able to activate/de-
activate the signal (i.e. to set the bit to one/zero)
of this control network, while the latter being just
signal receivers. Thus, every end-node owns an ex-
clusive one-bit-wide control network to notify bursts
events to the rest of end-nodes. Figure 1 shows the
one-bit-wide control network managed by end-node
0, but note that every end-node owns a similar in-
dependent one-bit-wide control network to send no-
tifications to the rest of nodes, so that in this 4x4
mesh network, there would be other 15 one-bit-wide
control networks besides the one shown. The over-
lapping of these independent control networks allows
every end-node to notify bursts without risk of colli-
sions with notifications from other end-nodes.
Any end-node notifies the rest of end-nodes of a

burst by setting to high value the signal of its BNN
line. Due to the simplicity of that signal, it reaches
all the end-nodes in a few cycles. The time spent in
propagating and processing this signal is modeled by
the “notification delay” (ND) parameter in the sim-
ulations. It is worth mentioning that the processing
of this signal is negligible (and so the required hard-
ware). Regarding the area overhead introduced by
the BNN, in [6] a far more complex additional net-
work is proposed, however, authors conclude that the
area overhead for this network is negligible.

C. Traffic separation

Every end-node implements a “burstiness bit-
vector”, each bit corresponding to a specific end-
node in the network, as can be seen in Figure 2.

Fig. 1. Node 0 communicates burst events through this 1-bit
network

When an end-node detects a high signal value in the
BNN line associated to an end-node, the former will
set to one in its burstiness bit-vector the bit corres-
ponding to the latter. All the messages are mapped
to the default virtual network once generated, but
the destination of every message is checked before in-
jection to obtain the value of the bit in the burstiness
bit-vector corresponding to the destination end-node
of the message. If that bit is set to one, the message
will not be directly injected but transferred to the ex-
tra virtual network. Obviously, messages addressed
to an end-node whose associated bit in the burstiness
bit-vector is set to zero, will remain mapped to the
default virtual network.

Figure 2 shows the basic structure of the sender
part of an end-node that has messages addressed to
end-nodes 1, 5 and 6. The message at the header
in that queue is addressed to end-node 5. As can
be seen, in the burstiness bit-vector, the bit corres-
ponding to end-node 5 is set to one (i.e. end-node
5 previously notified that it was receiving a burst),
so this message must be mapped to the extra vir-
tual network. Indeed, before injection, the arbiter
at the sender node checks the burstiness bit-vector
and transfers the message addressed to end-node 5
to the queue associated to the extra virtual network,
so that this message will be later injected from that
queue.

It is worth pointing out that, although messages
are injected either from the default queue or from
the extra one, all of them are initially mapped to the
default VN. This is because, if an end-node directly
maps to the extra VN the messages addressed to an
end-node that has recently notified a burst, there
may be messages still stored in the default queue
that are addressed to the same destination, and this
could introduce out-of-order message injection (and
so delivery) as queue selection policy is based on a
simple round-robin algorithm. Hence, to guarantee
in-order message injection and delivery, all the mes-
sages are first mapped to the default VN and the
arbiter is provided with some additional intelligence
to check the burstiness bit-vector, in order to eva-



luate whether a message should be directly injected
from the default queue or, on the contrary, it should
be transferred (by changing pointers) to the extra
virtual network.
Once an end-node notifies that it is no longer re-

ceiving bursty traffic (by setting to low value the sig-
nal of its BNN line), the other end-nodes will reset
the corresponding bit in their burstiness bit-vector.
Thereafter, new messages addressed to this end-node
will be injected from the queue associated to the de-
fault virtual network. However, note that this may
also introduce out-of-order message injection and de-
livery, as messages addressed to the end-node may
remain in the extra queue. The example of Figure
2 also shows a situation where there are messages in
the extra queue addressed to an end-node (specifi-
cally, end-node 0) whose associated bit in the bursti-
ness bit-vector has changed from one to zero.
In these cases, in-order packet delivery can be pre-

served if messages addressed to a specific end-node
are injected from the default queue only if there are
no messages addressed to the same destination in the
extra queue; otherwise, the packet must be trans-
ferred from the default queue to the extra one. How-
ever, this implies that other information than that of
the burstiness bit-vector is necessary, besides some
additional tasks for the arbiter. Specifically, every
end-node in BAHIA implements a presence vector.
This vector contains an element per end-node in the
network and every element is a counter indicating
how many messages adressed to this end-node are
stored in the extra queue. Every counter is incre-
mented each time a message addressed to the corres-
ponding end-node is moved from the default VN to
the extra one, and decremented when messages are
injected to that end-node from the extra VN. When
a message reaches the head of the default queue and
the bit associated with its destination in the bursti-
ness bit-vector is set to zero, the counter associated
with that destination in the presence vector is also
inspected: if the value of that counter is zero, the
message is injected from the default queue; other-
wise, the message is moved to the extra queue.
The whole mechanism necessary to keep in-order

message injection is a post-processing mechanism, in
the sense that messages are mapped to their final VN
once they reach the head of the default queue, and
not before. As mentioned above, the arbiter should
be in charge of performing this post-processing mech-
anism, that can be summarized in the next pseu-
docode:

r r=true
while ( t rue ) {

i f ( r r && ! isDefaultVNempty ( ) ) {
i f ( i sNodeReceiv ingBurst (msg .

d e s t i na t i on ) | | numFlitsInExtraVN (
msg . d e s t i na t i on ) > 0)

moveMessageToExtraVN (msg ) ;
else

injectFromDefaultVN() ;
} else i f ( ! isExtraVNempty ( ) )

injectFromExtraVN() ;
r r =! r r

}

Fig. 2. Flow followed by messages in a node

IV. Evaluation

In this section we present a preliminar evaluation
of BAHIA based on the results of simulation exper-
iments performed in bursty traffic scenarios. First,
we describe the simulation environment. Second, we
offer a robustness analysis of the diferent parameters
that define the BAHIA behavior. To carry this out
we stablish a baseline configuration, then running
simulations with different values of each parameter,
in order to find out the parameters of the configu-
ration that optimizes BAHIA performance. Third,
we compare the results obtained with and without
BAHIA in the same scenario. Fourth, we perform
an analysis of the influence of the number of virtual
networks over BAHIA and the performance improve-
ment regarding similar no-BAHIA scenarios. Finally
we perform analysis varying traffic patterns.

In order to better appreciate the BAHIA effect on
the traffic, results are shown in two graphs: one con-
taining default virtual network(s) data and one con-
taining the extra virtual network data. Notice that
we do not target overall throughput increase or over-
all latency reduction. Our aim is to separate bursty
traffic from non bursty one, thereby keeping the lat-
ter unaffected by the HoL-blocking the former may
produce.

A. Simulation environment

An NoC simulator has been used for the experi-
ments. Results are shown every 500 simulated cycles.
The network topology modeled in all the experiments
is a 2D mesh built from 64 switches arranged in a
8x8 mesh distribution, each switch being connected
to a single end-node. Regarding the traffic pattern,
each end-node generates baseline/background traf-
fic following an uniform pattern and at a rate of 0.2
flit/cycle. In addition, when simulation reaches cycle
10000, traffic bursts are sent to 4 differents nodes fol-
lowing a 4-to-1 strategy (i.e. each hotspot end-node
will receive traffic from 4 nodes) at a rate of 1 flit/-
cycle until cycle 20000 is reached. Meanwhile, the
rest of nodes keep sending at a rate of 0.2 flits/cycle.



TABLE I

BAHIA robustness analysis configuration

HT (flits/cycle) LT (flits/cycle) PI /cycles) ND (cycles)
baseline 0.7 0.2 500 4

HT analysis 0.5, 0.6, 0.7, 0.8, 0.9 0.2 500 4
LT analysis 0.7 0.1, 0.2, 0.3, 0.4, 0.5 500 4
PI analysis 0.7 0.2 100, 200, 400, 800, 1600 4
ND analysis 0.7 0.2 500 1, 2, 8, 16

 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800

La
te

nc
y 

 (
cy

cl
es

)

Transient

Latency BAHIA (default VNs mean)

BAHIA ND1
BAHIA ND2
BAHIA ND4
BAHIA ND8

BAHIA ND16

 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800

La
te

nc
y 

 (
cy

cl
es

)

Transient

Latency BAHIA (extra VN)

BAHIA ND1
BAHIA ND2
BAHIA ND4
BAHIA ND8

BAHIA ND16

Fig. 3. Notification delay analysis.
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Fig. 4. High-threshold analysis.

B. Parameters tuning

BAHIA behaviour is defined by four parameters:
BNN notification delay (ND), high-threshold (HT),
low-threshold (LT) and polling interval (PI). In or-
der to explore the robustness of the mechanism, we
have carried out an analysis of every parameter by
independently simulating different variations of the
parameters.

The baseline configuration, and the different val-
ues of the parameters used are shown in Table I.

First, we analyze the effect of varying the delay of
the BNN network. In Figure 3 we can see the results.
This figure shows how notification delay has negligi-
ble effects on the BAHIA behaviour. This gives some
reliability against unexpected jitter delays and grants
flexibility for hardware implementation since BAHIA
has no strict delay requirements. As can be seen the
traffic through the default VN is slightly affected by
the injection of bursty traffic regardless the value of
notification delay. Thus, having an aggressive BNN
network with one cycle-delay or having one with 16
cycles delay does not significantly affect the results.

Next we analyze the effect of varying the value of
the detection (high threshold at the receiver side of
the end-nodes). Figure 4 shows results for different
values of the detection threshold (HT), ranging from

50% to 90% of traffic reception rate. Note that, the
lower the threshold, the more aggressive the mech-
anism (i.e. more sensitive to traffic bursts), but it
may incur in false positives (i.e. non-bursty traf-
fic detected as bursty). By contrast, the higher the
threshold, the more selective the mechanism and it
may not detect real bursty traffic. However, as we
can see in Figure 5, for all the tested values of HT,
BAHIA behaves similarly except for the 90% thresh-
old value. In this case, the mechanism’s response
is slow. Nevertheless, in that case latency of non-
bursty traffic is still kept to its bounds and the mech-
anism successfully detects and separates bursty traf-
fic. Also, we can see that a low detection threshold
(50%) introduces some traffic in the extra VN (false
positives). However, this is not harmful as this traffic
is not penalized and overall latency keeps bounded.

Similarly, Figure 5 shows the results obtained
when varying the value of the low threshold (used
to detect the end of bursts). As can be seen this
parameter does not affect BAHIA performance be-
cause, when a burst ends, all virtual networks are free
from HoL-blocking effects, so traffic flows smoothly
through all virtual networks, thus no matters which
virtual network a flow is mapped to.

Finally, the value of the polling interval has been
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Fig. 5. Low-threshold analysis.
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Fig. 6. Polling interval analysis.

tested. As can be seen in Figure 6, all the values
but 100 cycles seem to be a correct choice, correctly
reacting to the burst so that no false positives are de-
tected. Nevertheless, the 100-cycle PI value, despite
of their false positives, achieves a lower latency in the
extra virtual network since it reacts more quickly to
the burst. Thus, taking into account that false pos-
itives have no harmful effects, it may be a correct
choice. Note that the polling interval tuning presents
a close relationship with the high-threshold analysis:
having a small polling interval is similar to having a
lower HT value. The contrary also applies: a large
polling interval could lead to the mechanism filter-
ing short transient bursts. We conclude, then, that a
small polling interval is convenient and not harmful.

C. BAHIA vs no-BAHIA analysis

In this section we carry out a general analysis of
BAHIA in comparison with similar scenarios with-
out BAHIA in order to quantify the performance
improvement of BAHIA. In the previous section we
have delimited optimal values for the parameters
that defines BAHIA behavior for the scenario used
in the simulations, so in this analysis we have set
BAHIA parameters according to these optimal val-
ues.

C.1 Baseline analysis

For this analysis, we have performed simula-
tions for the baseline configuration of BAHIA. Fig-
ure 7 shows the latency achieved with and without
BAHIA. Note that, for the extra VN, there is no data
corresponding to no-BAHIA as in this case there is
no extra VN, all the virtual networks being analogous
to the default virtual networks in the BAHIA case.
In Figure 7 we can see that for the no-BAHIA case,

HoL-blocking appears in the VN queues resulting in
high network latency. On the other hand, for the
BAHIA case, we got a significant improvement since
we have reduced network latency approximately a
120% in the default VN.

C.2 Virtual networks analysis

Now, we turn our attention to the scenario when
different sets of virtual networks are available. We
analyze 2, 4, and 8 virtual networks. For the BAHIA
case we keep a single extra virtual network and
the remaining virtual networks are used as normal
queues.
Figure 8 shows the results. As can be seen, the

higher the number of virtual networks the higher the
latency increase in the no-BAHIA case. In contrast,
when using BAHIA, non-bursty traffic latency keeps
bounded and minimized, reaching high latency re-
ductions up to a factor of 15x.

C.3 Traffic pattern analysis

This analysis consists in changing the hotspot pat-
terns. Specifically, we generate fewer hotspots but
more intense ones, as traffic bursts are generated by
creating 2 hotspots with an 8-to-1 strategy.
In Figure 9, we can see results for the 2-hotspot

simulations. As we have 16 end-nodes sending at a
rate of 1 flit/cycle of data rate to only two end-nodes,
contention is increased. As can be seen, BAHIA
achieves good results isolating non-bursty traffic in
the default virtual network.

V. Conclusions

It is well-known that HoL-blocking considerably
degrades the overall network performance. In fact,
this harmful effect is pronounced as more and more
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Fig. 7. Latency for the BAHIA vs no-BAHIA analysis.
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Fig. 9. Latency for the 2-hotspots analysis.

virtual networks are available in the system. In this
paper we have presented a solution (BAHIA) to solve
this problem by isolating bursty traffic from non-
bursty one. With this mechanism we do not ad-
dress congestion directly but we avoid HoL-blocking.
Thanks to this, we achieve good results in keeping la-
tency and throughput of regular traffic, obtaining up
to fifteen times better latency when compared with
the same scenario without BAHIA. As future work
we plan to deal with internal congestion within the
network and solve the problem in the same way, by
eliminating at runtime the HoL-blocking introduced
by congested traffic.
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