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Abstract— Traditional opportunistic cluster is de-
signed for running compute-intensive jobs. Data-
intensive jobs need distributed and parallel process-
ing. It also needs data-locality to overcome the over-
head of copying data between the nodes. MapReduce
is a popular framework for running data-intensive
jobs.

Availability of a specific runtime environment can
not be guaranteed in a opportunistic environment.
The application needs to be deployed dynamically.
Virtual machines can be used to deploy a dynamic
virtual cluster to run data-intensive jobs. Provision-
ing of virtual machine cluster needs to take account
the opportunistic properties of the cluster. The pro-
posed provisioning system must be able to decide the
allowable systems based on user request, input data
and number of tasks. It also should be able to add
new node to the virtual cluster. The proposed sys-
tem should be fault-tolerant to the virtual machine
loss and provide persistent and reliable data storage.
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I. Introduction

IN organizations, most of their computers are
under-utilized. This results in resource wastage.

These systems can be used to create a opportunistic
cluster[1]. The opportunistic batch scheduler har-
nesses the idle resources, which improves resource
utilization.The systems participating in opportunis-
tic cluster are not tightly coupled, any system can
leave or join the cluster anytime.

In recent decade, the popularity of cloud comput-
ing has emerged the virtualization technology as a
key mechanism to scale IT infrastructure. Servers
can be sliced into smaller systems to increase the
utilization with virtualization. As the workstations
and desktop computers are getting powerful, virtu-
alization can also be useful to better utilize these
systems.

Opportunistic cluster can not guarantee that the
job will find its required execution environment on
the execution system. To support user specific jobs,
the opportunistic scheduler should be able to dynam-
ically deploy user needed runtime environment on
the execution node.The virtualization technology can
solve the problem. Using virtual machine provision-
ing techniques user required execution environment
can be provided dynamically on user request.

Most scientific jobs required to process big data.
Processing of big data needs distribution of data
among the cluster nodes in small chunks and pro-
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cessing those chunks in parallel. The jobs are sent
near the data to overcome the overhead of copy-
ing data between nodes. The scheduler must be
data-aware to provide this data-locality. Most of
the traditional opportunistic scheduler is designed
for compute-intensive jobs and they do not sup-
port data-awareness. Map-reduce[2] is popular data-
aware distributed and parallel framework for process-
ing big data.

The proposed system provisions virtual machines
on execution systems to create a virtual machine
cluster of data-intensive application. The provision-
ing system have to take account the opportunistic be-
havior of the cluster. In opportunistic cluster avail-
ability of certain amount of resources is not guaran-
teed. So, the scheduler have to decide the number of
allowable virtual machine not solely on user request
but also on amount of input data and number of
tasks. The scheduler should be able to return a min-
imum number of virtual machines to the user so user
can start executing his job. When more system be-
come available, more virtual machines can be added
to the virtual machine cluster to aid the execution.
The provisioning system must be able to provide
fault tolerance when some virtual machines become
unavailable. The virtual machine cluster should be
able provide a reliable and persistent data storage.

The rest of the paper is organized as follows. Sec-
tion II introduces and discusses Opportunistic clus-
ter, virtualization and data-intensive Jobs. In data-
intensive jobs a brief introduction to MapReduce and
Hadoop has given. Section III describes some of the
related work done on running Hadoop on virtual ma-
chine and on opportunistic cluster. Section IV dis-
cusses the proposed provisioning technique used to
create Hadoop virtual cluster in opportunistic clus-
ter. Section V concludes this paper.

II. Background

A. Opportunistic Cluster

Organizations like Universities and IT farms are
equipped with hundreds of workstations and desk-
tops equipped with multi-core CPU and GBs of
RAM connected together with gigabit ethernet. But
these powerful systems are usually under utilized
as the student or the worker can only use a frac-
tion of the computing power provided by the sys-
tems. These computers can be used to create an op-
portunistic cluster. Opportunistic cluster provides
a batch scheduler. Users submit their jobs to the
scheduler and scheduler runs these jobs on idle re-
sources of the cluster. In opportunistic cluster, two



kind of users can be observed for a system. One is
the local users and another is the remote users who
want to harness the idle resources and run their jobs.
The opportunistic cluster balances the load between
these users. One way of doing the balancing is to just
simply stop the remote job execution when the sched-
uler encounter local user activity. Another way is to
partition the system and allocate certain amount of
resources for the scheduler. This partitioning can be
done using control groups[3].

Condor[4] is a specialized job and resource man-
agement system (RMS) for compute intensive jobs.
Condor uses opportunistic scheduling. Condor
chooses idle system to submit the jobs. This op-
portunistic scheduling support dynamicity of the
cluster where any node can join the cluster at any
time. Condor provides job management mechanism,
scheduling policy, priority scheme, resource monitor-
ing, and resource management. Users submit their
jobs to Condor, and Condor subsequently chooses
when and where to run them based upon a policy,
monitors their progress, and ultimately informs the
user upon completion.

A Condor pool consists of one central manager and
multiple submit and execution nodes. Central man-
ager is responsible for collecting information, match-
ing available resources with resource requests. The
matching of job to resource is done using ClassAds
matchmaking. Every machine in Condor pool adver-
tises their attributes to the central manager. Jobs
also have their own ClassAds which declare their re-
quirement. Condor plays the role of matchmaker by
continuously reading all job ClassAds and all ma-
chine ClassAds, matching and ranking job ads with
machine ads. Condor ensures that the requirements
in both ClassAds are satisfied.

B. Virtualization

Virtualization[5][6] is changing the way organi-
zations manage and deploy their infrastructure.
Servers are virtualized to be sliced into smaller in-
dividual virtual machines to deliver flexibility, scal-
ability and efficient utilization of resources. Today’s
desktops exhibit the CPU and memory capability
which were once reserved for mainframe and high
end UNIX systems. The workstations or desktops
used in organizations are mostly IA-32 architecture
systems. Using the virtualization technique, the host
system can be splitted into several guest systems
with the help of a hypervisor or Virtual Machine
Monitor(VMM)[7]. These guest systems run inde-
pendent of the host system. The guest system can
have different processor architecture and different
guest operating system. In traditional system where
the operating system run at most privileged level,
but in virtualized system the hypervisor needs to be
run in high privileged mode. In a opportunistic clus-
ter, the virtual machines can also be used to provide
custom execution environment on the remote execu-
tion systems. Systems can be virtualized using three
different techniques:

B.1 Full Virtualization

In full virtualization model, the guest operating
system is unaware of the virtualization environment.
The underlying hardware is fully emulated. The
guest contains no knowledge about the host oper-
ating system. The hypervisor handles all the guest
issued privileged instructions. This virtualization
technique suffer from high virtualization overhead.
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Fig. 1. Full Virtualization.

B.2 Paravirtualization

The guest operating systems are virtual environ-
ment aware. The privileged instructions are redi-
rected to the hypervisor. This cooperation between
hypervisor and the guest operating system results in
improved performance. This approach needs input
from the operating system vendors and starting with
kernel 2.6.23, it is included in Linux mainline kernel.
The hypervisor takes care of CPU and memory vir-
tualization, power management and virtual machine
scheduling. The host operating system is also man-
aged by the hypervisor. The host operating system is
modified to make it virtualization ready. This modi-
fications are incorporated in kernel 3. The host oper-
ating system has direct access to devices. It provides
device drivers and I/O management for virtual ma-
chines. Hypervisor handles all the CPU and memory
access, but the I/O request are redirected to the host
operating system.

Xen is a popular para-virtualization hypervisor.
Xen has a modified host operating system, named
Domain-0, which contains all device drivers. The
guest operating systems are also modified and they
are called Domain-U. Domain-U contains virtual
driver interface. All I/O requests of Domain-Us are
redirected to Domain-0 by the hypervisor.

B.3 Hardware Assisted Virtualization

The Intel VT-X and AMD-V extensions to the
IA-32 architecture simplified the CPU virtualiza-
tion. The CPU operates in host mode or guest
mode. While in guest mode, the CPU traps the
privileged instructions and returns control to the
hypervisor. Virtualized memory management unit
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Fig. 2. Paravirtualization with Xen.

(MMU) is provided in hardware with the inclusion
of Rapid Virtualization Indexing(RVI) for AMD and
Extended Page Table(EPT) for Intel in the proces-
sors. New features are continuously added by both
Intel and AMD to improve the performance of the
virtualization. These features will improve the vir-
tual machine performance without significant modi-
fication of the host or guest operating system.

Xen also supports Hardware Assisted Virtualiza-
tion.

Kernel Virtual Machine (KVM) relies on hardware
virtualization technologies. It is fully integrated with
Linux kernel. The virtual machines run as a reg-
ular Linux process. I/O requests are provided by
emulation of real device. KVM can provide para-
virtualization of I/O devices using virtio. The main
advantage of KVM is that it can take advantage of
capability of Linux kernel. Where for each new im-
provement, Xen have to be separately updated.

Fig. 3. Hardware Assisted Virtualization with KVM.

As the systems used in opportunistic cluster are
heterogeneous, the provisioning system have to deal
with different kind of hypervisor.

C. Data-intensive Jobs

Opportunistic schedulers are designed for handling
compute intensive jobs. As the input data for com-
pute intensive jobs are small, these jobs can be sched-
uled on any idle system and then the input data can
be fetched for processing. But when input data is

big, as for data intensive jobs, data locality becomes
important. The data should be available on the com-
puting node to overcome the overhead of data trans-
ferring. The job scheduler have to be data-aware to
achieve this criteria. The efficient way to analyze big
data is to distribute it in small chunks and process
those chunk in parallel[8]. So, a data-intensive job
scheduler does not only schedule the jobs but also
manage, access and distribute the input data.

MapReduce[2] is a popular framework for data-
intensive computing. This model contains two func-
tions Map and Reduce. These functions are written
by the user. MapReduce works with key-value pairs.

• The Map function gets a pair of key and value for
processing and generates modified intermediate
key-value pairs.

Map (key1, value1) ⇒ list (key2, value2)

• The reduce function merges all intermediate val-
ues associated with the same intermediate key.

Reduce (key2, list (value2)) ⇒ list (value2)

The MapReduce model allows programmers to
easily design parallel and distributed applications,
simply by writing Map and Reduce components,
while the MapReduce run time is responsible for par-
allelization, concurrency control and fault tolerance.

Fig. 4. MapReduce Job and Data Flow.

Hadoop[9] is an open source implementation of
MapReduce based on Java. Hadoop also includes
Hadoop Distributed File System (HDFS) to provide
high throughput access to application data. HDFS
is based on master-worker architecture. The mas-
ter is called namenode. It splits the data and dis-
tributes it to the slave node, which are called datan-
ode. Namenode stores the metadata about stored
files. Datanodes actually store the data. Splits are
replicated to assure reliability.

Hadoop MapReduce runs on top of HDFS and also
based upon master-worker architecture. The master
is called jobtracker and the slaves are called task-
trackers. The jobtracker queries the namenode for
the split locations, considering the information re-
trieved from the namenode, jobtracker schedules the
tasks on slaves. It also monitors the success and fail-
ures of the tasks.

Users submit jobs consisting of a map function and



a reduce function. Hadoop breaks each job into mul-
tiple tasks. First, map tasks process each split of
input and produce intermediate results, which are
key-value pairs. Next, reduce tasks fetch the list of
intermediate results associated with each key and run
it through the user’s reduce function, which produces
the final output.

III. Related Work

Amazon also introduces the Amazon Elastic
MapReduce [10]. The Amazon Simple Storage Ser-
vice (S3) is used to store the application script, the
input data, log files and the output results. It sup-
ports HDFS. The Amazon Compute Cloud (EC2) is
used to create the Hadoop cluster. Elastic MapRe-
duce takes care of provisioning a Hadoop cluster,
running the job flow, terminating the job flow, mov-
ing the data between Amazon EC2 and Amazon S3,
and optimizing Hadoop. The details of configuring
Hadoop, executing the job flow, managing the net-
working are hidden from the user.

The user launches AMI instances to create the
Hadoop cluster. Amazon Elastic MapReduce starts
instances in two security groups: one for the master
node and another for the core node and task nodes.

Master node assigns Hadoop tasks to nodes and
monitors their status. Core node is an EC2 in-
stance that runs Hadoop map and reduce tasks and
stores data using the Hadoop Distributed File Sys-
tem (HDFS). Core nodes are managed by the master
node. Core nodes run both the datanodes and task-
tracker Hadoop daemons. Task node is an EC2 in-
stance that runs Hadoop map and reduce tasks, but
does not store data. Task nodes are managed by the
master node.

Amazon elastic MapReduce shows the possibility
of using virtual machines to run MapReduce jobs.
The virtual machine MapReduce cluster will be eas-
ier to manage as the cluster resource management
daemons and MapReduce daemons are separated by
the virtualization. The data locality will be provided
by the cluster resource management system. The
MapReduce daemons will be setup and run on the
virtual machines.

In [11], the performance of running Hadoop jobs on
virtual machines are evaluated using Xen hypervisor.
It is pointed that virtual machines have overheads
when running I/O intensive jobs as in paravirtual-
ization the I/O requests have to be transferred to the
host system for processing. In [12][13], interference-
aware scheduling is proposed to use to schedule CPU
between the virtual machines and the host operating
system in Xen to obtain better performance in I/O
intensive jobs.

Storing the big data in a opportunistic cluster is a
problem, as the environment is volatile. When in a
dedicated Hadoop cluster a chunk is replicated three
times to get a higher availability, a chunk have to be
replicated eleven times to get high availability in a
opportunistic cluster with 0.4 unavailability rate[14].

In [14], proposed MapReduce On Opportunis-

tic eNvironments (MOON) system contains a small
number of dedicated resources. These dedicated re-
sources help to obtain the availability of input data
on the cluster with much smaller replication factor.
The dedicated resources works as a backup storage
and chunks are replicated just once on these nodes.
The input data are replicated on non-dedicated sys-
tem using a higher replication factor to gain data-
locality. MOON also proposes two-phase task repli-
cation depending on the total job progress to en-
sure sufficient progress with high node volatility. The
dedicated resources can also be used to run the task
if available.

IV. Virtual Machine Provisioning

The opportunistic cluster imposes several chal-
lenges in provisioning virtual machine cluster. As
the cluster will be used to run data-intensive appli-
cation, the cluster must be able to provide a consis-
tent and reliable storage for input data as well as a
reliable parallel platform to analyze the data.

A. Provisioning Virtual Machine Cluster

When the user requested application is distributed
parallel application, the virtual machine provision
gets complex as the virtual machines need to work
together to create a virtual cluster to be able to exe-
cute the user job properly. So, the virtual machines
needs proper network configuration.

The networking can be configured in two ways:

• Virtual LAN:
The virtual machines can be connected using
Virtual LAN. The virtual machines and the clus-
ters will reside on different network. This can be
done using Open vSwitch[15].

• Bridged networking:
The virtual machine can obtain IP address be-
long to the cluster sub network using bridged
networking. Virtual Machines configured this
way can send and receive data from any other
system of the cluster.

While the Virtual LAN provides isolation, the
bridged networking is easy to manage and configure.

In opportunistic cluster, when a user requests vir-
tual machines, available systems in the cluster might
be less than the user request. In this kind of situa-
tion, the provisioning system have to decide to pro-
vide the user the available systems or wait for more
systems to become available. The decision depends
on the type of user application. As for Hadoop, the
user can start with a small cluster and when systems
become available get more virtual machine to scale
the cluster.

On the submit system, when user submits a
Hadoop job, the submission process needs to decide
the number of allowable virtual machines. Submis-
sion process needs to inquire central manager to ob-
tain number of available nodes and decides the allow-
able nodes depending on user request, input data size
and number of map and reduce tasks. The submis-
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sion process will then create the network and Hadoop
configuration. The process will generate separate job
for each alloted system. This job will run on execu-
tion system to configure and power on the the virtual
machine. When powered on it will configure Hadoop
and start the Hadoop daemons.

Fig. 6. Hadoop Virtual Cluster

The provisioning system should be able to inter-
act with the data-intensive application to provide
job management and monitoring. The proposed sys-
tem should be able to transfer the input data to the
virtual machine cluster and submit the jobs to the
data-intensive application. In case of Hadoop, input
data need to be transferred to the virtual machine
Hadoop cluster and uploaded into the HDFS. This
step can take significant time if the input data is
large. Once the data is transferred, the Hadoop job
can be launched.

B. Fault-tolerance

As in our environment any system can leave the
cluster at anytime, virtual machines can disappear
with the input data. If input data is lost, the run-
ning job will fail. As stated in [14], the input data
have to be replicated with a higher factor. Also, the
task running on the lost virtual machine have to be
rescheduled. if the task is a reduce task then all the
intermediate data created by the map tasks are also
lost. So, the map tasks have to be rescheduled to
generate the intermediate data before scheduling the
reduce task.

C. Scaling the Virtual Machine Cluster

In opportunistic cluster, new system may become
available and can be used to scale the virtual ma-
chine cluster for efficiency. It is easy to add a new
node in Hadoop cluster. But HDFS but not move
data chunks to new nodes automatically. The clus-
ter need to be re-balanced to transfer data chunks to
the newly added block.

The provisioning system keeps track of the exe-
cution of data-intensive job and if needed add new
system to the virtual cluster. The decision of adding
new virtual machine depends upon if the remaining
task needs more nodes.

V. Conclusion

The virtualization technology is used to provide
Hadoop virtual cluster to run data-intensive job in
opportunistic cluster. Virtualization suffers penalty
from I/O intensive applications. But as in oppor-
tunistic cluster, the harnessed resources are free to
the organization, this small penalty can be ignored
in comparisons to the benefits of having dynamic vir-
tual environment to run specialized jobs. The virtu-
alization will aid in harnessing the idle resources as
well. Also, as the virtualization technology is getting
input from both the software and hardware develop-
ment, the virtualization will give more performance
in the future.

The provisioning of virtual machine in opportunis-
tic cluster needs more decision making as it is very
volatile. When granting virtual machine, if the avail-
able system is less than the user need, the allowable
should be decided by evaluating user need against
the available system, size of input data and number
of map and reduce jobs. While granting more sys-
tem to a exiting virtual cluster, the remaining jobs
need to be evaluated with exiting systems in the vir-
tual cluster to decide wheather adding new system
is beneficial. To obtain fault-tolerance from system
loss, the replication factor should be higher so that
system loss does not result in input data loss.
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