
Performance of OpenMP simulations on the
cloud

Natalia Seoane1, Raul Valin2 , Antonio J. Garcia-Loureiro1, and Tomás F. Pena1

Abstract—In this paper we present an analysis of the
impact of the hyperthreading, the number of virtual
machines employed per host, the number of cores and
the I/O on the performance of two parallel scientific
benchmarks. The virtual machines have been man-
aged through the KVM hypervisor included in the
CloudStack platform. The applications selected as
benchmarks are the Linpack and a two–dimensional
Multisubband Ensemble Monte Carlo semiconduc-
tor device simulator that has been parallelised using
OpenMP.

The obtained results show for 4 cores lower simula-
tion times than for 2 cores when just 1 or 2 VMs are
used per host. The influence of enabling the hyper-
threading is insignificant for a low number of virtual
machines per host (1 or 2), but for a higher number of
VMs there is a considerable reduction in the simula-
tion time when the hyperthreading is activated, that
is more substantial when there is a considerable I/O
or in the Linpack benchmark. Moreover, we observe
an important degradation in the performance when
the number of VMs is increased, that is more serious
when the hyperthreading is disabled and 4 cores are
being used.

Keywords—Cloud computing, virtualisation, KVM,
benchmarking, CloudStack, semiconductor device
simulation, Monte Carlo, OpenMP

I. Introduction

Cloud is drawing the attention from the indus-
try, research centres and the IT community in gen-
eral since it places the computing infrastructure in
the network reducing the management costs of hard-
ware and software resources. Because of such inter-
est there has been substantial development of open
source Cloud management platforms such as Cloud-
Stack [1], Open Nebula [2] or Eucalyptus [3]. These
platforms provide support for several hypervisors like
KVM [4] or Xen [5].
In order to test a platform based on CloudStack,

we have selected, as examples of scientific parallel
computing applications, a two–dimensional Monte
Carlo semiconductor device simulator (2D MSB–
EMC) parallelised using OpenMP and the Linpack
numerical library [15]. Using these applications we
have evaluated the effect of over–provisioning on sev-
eral key factors in cloud computing: the perfor-
mance, the influence of the hyperthreading, the num-
ber of virtual machines running on the same physical
host and the hard disk I/O. To manage the virtu-
alised services we have utilised the CloudStack plat-
form.
This paper is organized as follows. Section II de-

scribes the main features of the CloudStack platform.

1Departamento de Electrónica e Computación, Universidade
Santiago de Compostela, e-mails: natalia.seoane@usc.es,
antonio.garcia.loureiro@usc.es, tf.pena@usc.es

2Supercomputing Center of Galicia (CESGA), e-mail:
rvalin@cesga.es

Fig. 1. Scheme representing the CloudStack architecture.

The two scientific applications used as benchmark
tests are introduced in Section III. The simulation
results are presented in Section IV and conclusions
are drawn up in Section V.

II. CloudStack platform

CloudStack [1] is an open source application de-
signed to deploy and manage large networks of vir-
tual machines as a cloud computing platform. The
CloudStack software works with a variety of hyper-
visors including Oracle VM, KVM, vSphere and Cit-
rix XenServer. It provides a massively scalable cen-
tralized management server that enables downtime–
free management server maintenance and reduces the
workload of managing a large–scale cloud deploy-
ment. It implements a web interface on top of the
CloudStack API to supply a real–time view of the
storage, IP pools, CPU, memory and other resources
in use. The main benefits of CloudStack are the cut-
ting in IT operation costs and the reduction in com-
plexity and variability by using standard workloads,
ensuring the consistency with each application and
service deployment [7].
Fig. 1 presents an scheme of the basic components

in the CloudStack architecture. The infrastructure
is governed by the management server. The virtual
machines are deployed in the compute nodes, which
are hypervisor–enabled hosts. A group of compute
nodes is known as a Pod, and a collection of Pods
forms an availability zone. These zones are in sight
of the end users, who choose one of them to start a
virtual machine.

III. Selected benchmarks

A. 2D Parallel Multisubband Ensemble Monte Carlo
simulator

The 2D MSB–EMC simulator is based on mode–
space approach of the transport [8] and solves the



Transport Plane

Slices

Co
nfi

ne
m

en
t D

ire
ct

io
n

Fig. 2. Representation of the Double Gate MOSFET. The
BTE equation is solved in the transport plane and the 1D
Schrödinger equation is solved in the confinement direc-
tion for each grid point in the transport direction. The
drain and source doping concentration is ND=1020 cm−3

and the channel doping concentration is NA=1015 cm−3.

Boltzmann Transport Equation (BTE) in the trans-
port direction using the Ensemble Monte Carlo
(EMC) method [9]. Quantum effects are introduced
via the self–consistent solution of the Schrödinger
equation in the confinement direction, perpendicu-
lar to the transport plane.
The BTE equation (1) describes the transport phe-

nomena in a semi–classical approach where the fun-
damental quantity is the carrier distribution function
f(�r, �v, t).

∂f

∂t
+ �v· ∇rf +

∂k

∂t
· ∇kf =

∂f

∂t

∣
∣
∣
∣
coll

(1)

The left–hand side describes the time evolution
in the phase–space of the carrier distribution func-
tion. �v is the group velocity of carriers and ∂k/∂t
is proportional to the driving field. According to
the mode–space approach, the drift field is calculated
from the derivative of Ei,ν(x), e.g. the driving force
is different for each subband corresponding to a given
valley.
The right–hand side represents the change of

f(�r, �v, t) due to collisions, in our case, phonon and
interface roughness scattering processes. The prob-
abilities of the scattering mechanisms are tabulated
in the simulator and they are calculated during the
simulation [10].
For thin body devices, quantum confinement ef-

fects are quite important and must be considered
properly. The MSB–EMC simulator takes these ef-
fects into account by coupling the BTE equation with
the Schrödinger equation in the confinement direc-
tion [11]. From the simulation point of view, our
transistor is considered as a stack of slices perpendic-
ular to the transport direction as seen in Fig. 2. The
electrostatics of the system is calculated from the
self-consistent solution of the 2D Poisson and the 1D
Schrödinger equations for each slice and conduction
band valley [12].
Fig. 3 depicts a block diagram of the 2D MSB–

EMC simulator. As first step, a starting solution

Fig. 3. Flow diagram of the 2D Parallel Multisubband En-
semble Monte Carlo simulator.

of the simulated device (Initial Conditions and Ini-
tial Multisubband blocks) is required in order to
obtain the initial values of the electric field and
the scattering table needed for the first iteration of
the MC simulation. This initial guess is calculated
through the self–consistent solution of the Poisson
and Schrodinger equations at equilibrium.

The time domain of the MC simulation is discre-
tised in short intervals, namely iteration times, where
the motion of the electrons is simulated. After the
flight of all superparticles a new electron distribu-
tion is obtained from the evaluation of the new po-



sitions and properties of them, and therefore, the
electrostatic potential has to be updated solving the
2D Poisson equation in the transport plane. Fur-
thermore, it is also necessary to evaluate the wave–
function by solving the 1D Schrödinger equation for
each slice in the confinement direction. This will
allow us to update the scattering table. The 1D
Schrödinger equation and the scattering table have
to be solved self–consistently with the updated value
of the electrostatic potential.

A drawback of this simulator (compared with
semi–classical EMC codes) is its computational bur-
den due to the calculation of the scattering table for
each slice for every new solution of the Schrödinger
equation to keep the self–consistence of the simula-
tion [13]. In the last step of the simulation flow, the
obtained values of the driving field and the probabil-
ity rates of the scattering tables are employed as ini-
tial conditions for the next iteration. This iterative
process is repeated up to the end of the simulation
time. Bearing in mind the high computational load
of these calculations, the 2D MSB–EMC simulator
has been parallelised using the OpenMP API [14] to
reduce the computational time required to simulate
2D MOSFET transistors.

B. Linpack benchmark

The Linpack benchmark [15] measures the float-
ing point rate of execution of a computer by solving
a dense system of linear equations. The user can
scale the size of the problem and optimise the soft-
ware in order to achieve the best performance for a
given machine. Linpack uses very intensively float-
ing point operations, so its results are very depen-
dent on the FPU of the system. This benchmark is
widely accepted and used in the scientific community
as a general method of evaluating computer and su-
percomputer performance. Currently, it is possible
to find performance figures available for most of the
systems [16]. Information about the parallel imple-
mentation of the Linpack benchmark can be found
in [17].

IV. Simulation results

The simulation results presented in this section
have been obtained using as a host an Asus P6-
P8H61E with 4 cores and 8GB of RAM and an In-
tel(R) Core(TM) i7-2600 CPU @ 3.40GHz proces-
sor. The interconexion network is a GigaBit Ether-
net. The operative systems of the host and of the
virtual machines are CentOS 64Bit release 6.1 and
Debian 6.0.4 64Bit respectively. The network file
system used is NFS V3 with the following config-
uration:

nfs rw, relatime, vers=3, rsize=1048576,
wsize=1048576, namlen=255, hard, proto=tcp,
timeo=600, retrans=2, sec=sys,

To perform this analysis we have deployed several
virtual machines in the same host using the KVM
hypervisor (version qemu-kvm-0.12.1.2). The virtu-
alisation API [18] is libvirtd (version 0.9.4). We have

1 2 3 4
Virtual machines per host

25

50

75

100

125

150

Si
m

ul
at

io
n 

tim
e 

(s
)

1 2 3 4
Virtual machines per host

25

50

75

100

125

150

Si
m

ul
at

io
n 

tim
e 

(s
)

2
Cores

4

On Off
Hyperthreading

Fig. 4. 2D MSB–EMC simulation time versus the number of
virtual machines per host and the number of cores when
no I/O is generated. The influence of the hyperthreading
is also shown.

used VMs with either 2 or 4 virtual cores, each of
them with 2GB of RAM available. The virtual CPU
is QEMU Virtual CPU (version cpu64-rhel6).

A. 2D MSB–EMC

Initially, it is worth noting that a realistic simula-
tion of a MOSFET transistor will require performing
studies of stationary states of at least 10 ps. Such
studies need over 10 hours of computational time in
a Xeon processor. In this work we use as a test a
shorter simulation of 1 ps and 100000 eps (electrons
per superparticle), although the results will still be
valid for longer simulation times.

A realistic test using the 2D MSB–EMC simulator
will generate an important amount of I/O that needs
to be read from or written to hard disk. To avoid the
interference of this kind of operations in the results
we initially remove all I/O from the simulator. Fig. 4
shows the 2D MSB–EMC simulation time versus the
number of virtual cores and VMs deployed per host
when there is no I/O generated. The influence of
the hyperthreading is also shown in the figure. For
2 cores, with 3 or less VMs deployed, results show
similar simulation times whether the hyperthread-
ing is enabled or not. For 4 cores, this is only true
when we deploy a single VM in the host. However,
for a larger number of VMs, the effect of enabling
the hyperthreading is up to a 10% decrease in the
simulation time for both 2 and 4 cores.

When comparing the number of cores employed, if
the hyperthreading is enabled, simulation times are
lower for 4 cores when 1 or 2 VMs are deployed, or
for just 1 VM if the hyperthreading is disabled. For a
higher number of VMs, the tendency is inverted. As
expected, there is an increase in the simulation time
when the number of VMs per host is increased. For
2 cores, when the hyperthreading is enabled, this in-
crease is lower than 10% when 2 VMs are being used
and it reaches 51% and 87% respectively, for 3 and
4 VMs. For 4 cores, this increase in the simulation
time with the number of virtual machines is more
pronounced, ranging from a 55% increase when we



1 2 3 4
Virtual machines per host

0

300

600

900

1200
Si

m
ul

at
io

n 
tim

e 
(s

)

1 2 3 4
Virtual machines per host

0

300

600

900

1200
Si

m
ul

at
io

n 
tim

e 
(s

)

2
Cores

4

On Off
Hyperthreading

Fig. 5. 2D MSB–EMC simulation time versus the number of
virtual machines per host and the number of virtual cores
when a realistic I/O is generated. The influence of the
hyperthreading is also shown.

deploy 2 VMs to a 222% for 4 VMs. On the other
hand, when the hyperthreading is disabled we ob-
serve similar or slightly larger increases in the sim-
ulation time for 2 cores. However, the increase in
the simulation time when 4 cores are used is more
marked, varying from 111% for 2 VMs to over 300%
for 4VMs.

We are going to present next an analysis of the
impact of the I/O on the performance of the 2D
MSB–EMC simulator. In a 1ps long simulation, we
perform 1000 iterations (i.e. the time step is 1 fs).
Every 10 time steps, we write to a file the values of
the different variables that are being calculated: the
drain current, the electrostic potential for each node
mesh, the subband energy and the population of each
subvalley and band. Note that this test is more re-
alistic than the previous one. In order to make this
analysis we need to incorporate an extra virtual ma-
chine with 4 available cores deployed in an Intel(R)
Core(TM) i7-2600 CPU @ 3.4GHz host. This new
VM exports an NFS file system that is being shared
among the other VMs to store the simulation results.

Fig. 5 shows for this test, the simulation times ver-
sus the number of cores and VMs deployed per host.
The impact of the hyperthreading is also shown in
the figure and it follows the same trend as in Fig. 4.
We can see independently of the hyperthreading be-
ing enabled or not, minor differences in the execu-
tion times for 2 cores, when using 3 or less VMs, or
4 cores, when using 1 VM. In this case, the effect
of enabling the hyperthreading is also noticed for a
larger number of VMs, with reductions of up to 24%
in the simulation time for both 2 and 4 cores.

With respect to the number of cores employed, we
obtain lower simulation times for 4 cores when just 1
or 2 VMs are deployed. For a higher number of VMs
per host, we observe the oppposite behaviour. Al-
though these results follow a similar tendency than
the previously observed in Fig. 4, a much larger de-
terioration in the performance is found for 4 cores
when the number of VMs per host is increased.

We need to bear in mind that an increase in the

1 2 3 4
Virtual machines per host

200

400

600

800

Si
m

ul
at

io
n 

tim
e 

(s
)

1 2 3 4
Virtual machines per host

200

400

600

800

Si
m

ul
at

io
n 

tim
e 

(s
)

2
Cores

4

On Off
Hyperthreading

Fig. 6. Linpack simulation time versus the number of virtual
machines per host and the number of virtual cores. The
influence of the hyperthreading is also shown.

number of processes that use the disk shared through
NFS will lead to interruptions in the application
since the I/O operation will require more and more
time due to the rise of the number of processes com-
piting for getting acess to the disk. Consequently,
there is a notable increase in the simulation time
when the number of VMs is increased. When the hy-
perthreading is ON and two cores are used, it ranges
from an increase of 3% when 2 VMs are deployed to
95% with 4 VMs. If we utilise 4 cores, this increase in
the execution time varies between 63% with 2 VMs
to 376% with 4 VMs. If the hyperthreading is OFF
and we deploy 4 VMs we can see an increase in the
simulation time of up to 150% for 2 cores and of
almost a 500% for 4 cores. These percentages are
notably larger than those observed when there was
no I/O written to disk.

B. Linpack

In this section, we present a similar analysis using
the Intel parallel Linpack benchmark. In this test we
use a problem size of 5000, with alignment values of
4KBytes. Linpack provides the average performance
in Gflops by all the Linpack runs (5 in our case) for a
single test. In order to make a proper comparison be-
tween the results obtained when using Linpack and
the 2D MSB–EMC simulator, Fig. 6 shows the ex-
ecution time versus the number of cores and VMs
for the Linpack test. We compare these results with
the ones presented in Fig. 4 since Linpack just uses
the CPU of the system and does not have I/O de-
pendencies. In these two figures the impact of the
hyperthreading has also been shown.

First, we examine the effect of activating the hy-
perthreading on the results. For 2 cores, whether
we enable the hyperthreading or not, we obtain the
same simulation times when we deploy 1 or 2 VMs.
The same happens for 4 cores with 1 VM per host.
However, the benefits of enabling the hyperthread-
ing are evident for a larger number of VMs per host,
observing for instance, over a 70% drop in the sim-
ulation time for both 2 and 4 cores when 4 VMs are
used.



For the Linpack test, simulation times for 4 cores
are also lower than for two cores when only 1 VM
is utilised per host. There is an abrupt decay of the
performance when the number of virtual machines is
increased as seen in Fig. 6, which is more prominent
when the hyperthreading is disabled.

Finally, we evaluate the impact on the perfor-
mance of the number of virtual machines. When
using two cores, simulation results follow a similar
trend to the observed in the 2D MSB–EMC simula-
tor. The increase in the simulation time due to an
increase in the number of VMs per host is around
4% for 2VMs, and when using 4VMs it reaches 120%
and 300% if the hyperthreading is ON or OFF, re-
spectively. For 4 cores, there is a deterioration of the
performance when the number of virtual machines is
increased that can be seen in the dramatic increase
in the simulation time.

V. Conclusion

Cloud technologies are drawing the attention from
the industry, research centres and the IT community
since they offer the possibility to virtualise services,
providing virtual machines to users for their execu-
tion. Currently, there is a wide range of open-source
solutions for building private, public or even hybrid
Clouds.

In this paper we have used the KVM hypervi-
sor included in this platform to manage the virtu-
alised services. The objective is to analyse the in-
fluence of the hyperthreading, the number of vir-
tual machines employed per host and the I/O on
the performance of two parallel benchmarks: a two–
dimensional Multisubband Ensemble Monte Carlo
semiconductor device simulator that has been par-
allelised using OpenMP and the Linpack.

For 4 cores we obtain lower simulation times than
for 2 cores but just when 1 or 2 VMs are used per
host. The influence of enabling the hyperthreading
is imperceptible for 1 or 2 virtual machines per host,
but for a higher number of VMs there is a noticeable
drop in the simulation time when the hyperthread-
ing is ON, that is more substantial when there is I/O
or in the Linpack benchmark. Furthermore, there is
a clear deterioration in the performance when the
number of VMs is increased, that is more patent
when the hyperthreading is OFF and 4 cores are be-
ing used.

Acknowledgement

The work developed in this paper has been sup-
ported in part by the Ministry of Education and
Science of Spain and FEDER funds under contract
TEC2010–17320 and by the Xunta de Galicia under
contracts 2010/28 and 09TIC001CT.

References

[1] Cloudstack, http://cloudstack.org/
[2] OpenNebula, http://opennebula.org
[3] Eucalyptus, http://open.eucalyptus.com
[4] KVM, http://www.linux-kvm.org
[5] Xen, http://xen.org

[6] F. Gomez-Folgar, J. López Cacheiro, C. Fernández
Sánchez, A. Garcia-Loureiro and R. Valin, An e-Science
infraestructure for nanoelectronic simulations based on
grid and cloud technologies, Spanish Conference Electron
Devices (CDE), pp. 1-4, 8-11, 2011

[7] CloudStack, http://cloudstack.org/software/features.html
[8] R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom, and

D. Jovanovic, Simulating quantum transport in nanoscale
transistors: Real versus mode–space approaches, Journal
of Applied Physics, Vol. 92, No. 7, p. 3730, 2002

[9] Carlo Jacoboni and Paolo Lugli, The Monte Carlo Method
for Semiconductor Device Simulation, Springer–Verlag
Wien New York, 1989

[10] Mark S. Lundstrom, Fundamentals of Carrier Transport,
Cambridge University Press, 2000

[11] B. Winstead and U. Ravaioli, A quantum correction
based on Schrödinger equation applied to Monte Carlo de-
vice simulation, IEEE Transactions on Electron Devices,
Vol. 50, No. 2, pp. 440-446, 2003

[12] C. Sampedro, F. Gámiz, A. Godoy, R. Vaĺın, A. Garćıa-
Loureiro, and F.G. Ruiz, Multi–Subband Monte Carlo
study of device orientation effects in ultra–short channel
DGSOI, Solid–State Electronics, Vol. 54, No. 2, pp. 131-
136, 2010

[13] C. Sampedro, F. Gámiz, A. Godoy, R. Vaĺın, A. Garćıa-
Loureiro, N. Rodŕıguez, I.M. Tienda-Luna, F. Martinez-
Carricondo, and B. Biel, Multi–subband ensemble Monte
Carlo simulation of bulk MOSFETs for the 32nm-node
and beyond, Solid–State Electronics, Vol. 65-66, pp. 88-
93, 2011

[14] The OpenMP Specifications for Parallel Programming,
http://www.openmp.org

[15] Linpack, http://software.intel.com
[16] Linpack report, http://performance.netlib.org/

performance/html/PDSreports.html
[17] Intel Math Kernel Library, User’s guide, 2008
[18] The virtualization API, http://libvirt.org/


