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Abstract— With energy costs now accounting for
nearly 30 percent of a data centre’s operating ex-
penses, power consumption has become an impor-
tant issue when designing and executing a parallel
algorithm. This paper analyzes the power consump-
tion of MPI aplications following the master–slave
paradigm. The analytical model is derived for this
paradigm and is validated over a master–slave matrix–
multiplication. This analytical model is parameter-
ized through architectural and algorithmic parame-
ters, and it is capable of predicting the power con-
sumption for a given instance of the problem over
a given architecture. We use an external, metered,
power distribution unit has been that allows to easily
measure the power consumption of computing nodes
without the needings of dedicated hardware.

Keywords— Energy–efficient algorithms; Power per-
formance

I. Introduction

In recent years power consumption has become a
major concern in the operation of large-scale data-
centers and High Performance Computing facilities.
As an example, the 10 most powerful supercomputers
on the TOP500 List(www.top500.org) each require
up to 12 MW of power for the entire system (comput-
ing and cooling facilities). As a result, power-aware
computing has been recognized as one of critical re-
search issues in HPC systems.

New processor architectures allow power manage-
ment through a mechanism called Dynamic Voltage
and Frequency Scaling (DVFS) where applications
or operating system has the ability to select the fre-
quency and voltage on the fly. Depending on re-
quired resources for the application you can select
a combination of voltage and frequency, denoted as
processors state or p-state. Different p-states deal to
different power consumption, allowing power man-
agement by applications [1].

Power measurement can give us information about
the energy consumed by systems, but is not sufficient
for challenges such as attributing power consumption
to virtual machines, predicting how power consump-
tion scales with the number of nodes, and predict-
ing how changes in utilization affect power consump-
tion [2]. These tasks require accurate models of the
relationship between resource usage and power con-
sumption. Models based on architectural parameters
has been widely developed [3], [4].

We have developed an instrumentation framework
based on metered PDUs (Power Distribution Units),
allowing to measure the power consumption of HPC
nodes while applications are executed. In a simi-
lar way we model application performance (execu-
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tion time) [5], [6], we propose to model power con-
sumption using architectural parameters (number of
cores, cache misses, memory access, network latency
and bandwidth) and algorithmic parameters (prob-
lem size). The analytical power models obtained can
be used by schedulers to save energy when applica-
tions are executed on HPC systems.

The rest of this paper is organized as follows: Sec-
tion II introduces master–slave paradigm and Section
III describes our experimental setup and measure-
ment system. In Section IV we introduce an analyt-
ical power model for the proposed application. We
show the obtained models on Section V. Finally, Sec-
tion VI summarizes the paper with some conclusions
and future work.

II. The Master Slave Paradigm

Under the Master–slave paradigm it is assumed
that the work W , of size m, can be divided into a
set p of independent tasks work1, ..., workp, of ar-
bitrary sizes m1, ...,mp,

∑p
i=1mi = m, that can be

processed in parallel by the slave processors 1, ..., p.
We abstract the master–slave paradigm by the code:

f o r ( proc = 1 ; proc <= p ; proc++)
send ( proc , work [ proc ] ) ;

f o r ( proc = 1 ; proc <= p ; proc++)
receive ( proc , result [ proc ] ) ;

}

/∗ Slave Proces sor ∗/
receive ( master , work ) ;
compute ( work , result ) ;
send ( master , result ) ;

The total amount of work W is assumed to be
initially located at the master processor, processor
p0. The master, according to an assignment pol-
icy, divides W into p tasks and distributes worki to
processor i. After the distribution phase, the mas-
ter processor collects the results from the processors.
Processor i computes worki and returns the solution
to the master. The master processor and the p slaves
are connected through a network, typically a bus,
that can be accessed only in exclusive mode. At a
given time-step, at most one processor can communi-
cate with the master, either to receive data from the
master or to send solutions back to it. The results
are returned back from the slaves as a synchronous
round robin.

The transmission time from the master processor
to the slave processor i will be denoted by Ri =
(βi + τiwi) where wi stands for the size in bytes as-
sociated to worki and βi and τi represent the latency
and per-word transfer time respectively. This com-
munication cost involves the time for the master to



Fig. 1. Master-slave diagram of time for matrix multiplication

send data to a slave and for it to be received. The
latency and transfer time may be different on every
combination master - slave and they must be calcu-
lated separately.

A. Master–slave matrix–multiplication

We introduce the master–slave matrix–
multiplication application as a case study. First of
all, we describe de algorithm and the corresponding
performance analytical model.

For the master–slave model that we are using in
this paper (Fig. 1), the time gets approximately re-
duced by a factor of 1/p, but a small overload is
introduced in the process of broadcasting the matri-
ces and to gather the results. The complete process
includes four principal segments: (1) Broadcasting
of B matrix, (2) Sending of A matrix by blocks, (3)
Waiting for slaves to finish computing and (4) Re-
ceiving of matrix C. The total execution time is:

Tpar = Tbcast + p · Tsnd + Tcomp + Trcv (1)

In order to estimate the time used in the broad-
cast segment, it is necessary to have determined two
parameters related to the network: βbcast and τbcast,
which represent the latency and the bandwidth of the
network while performing broadcasting operations.
These parameters can be obtained performing a test
in C with MPI in the system used [7]. The number of
elements to be sent is the size of the matrix squared.

Tbcast = βbcast · lg(p) + τbcast · lg(p) · n2 (2)

The send an receive operations performed in the
master–slave paradigm can also be modeled in a
similar way. Again, two parameters are needed,
βsnd/rcv and τsnd/rcv, obtained with a test referenced
in [8]. The first parameter is the latency, but it has
a negligible effect, because the sub-blocks to be sent
are very few. The τ parameter is the bandwidth in
node-to-node communication.

Tsnd/rcv = βsnd/rcv + τsnd/rcv ·
n2

p
(3)

Tcomp can be modeled by well-known com-
plexity formula O(N3) for a sequential matrix–
multiplication on each processing element. In Sec-
tion IV-C we give more detail about the model for
the computation load and the corresponding energy
consumed.

This analytical model to predict the running time
of master-slave applications has been widely vali-
dated. Our goal now is to obtain a similar analyti-
cal model for the power consumption of the master–
slave matrix–multiplication algorithm. Section IV
describes de model obtained for this implementation
on comodity cluster instrumented with a metered
PDU.

III. Experimental Setup

The measuring system used is one manufactured
by the company Schleifenbauer [9]. The equipment
consists of a power distribution unit (PDU) with one
input and nine outlets, and a master device called
Gateway. The Gateway serves as a hub for the avail-
able PDUs. Each PDU is connected to the gateway
with standard UTP cable and a RS-485 transport
layer at 100 Kbit/s. The Gateway is initially con-
figured through the USB or RS-232 port, assigning
it a management IP address. As the Gateway has
an Ethernet interface that connects to the appro-
priate network, this address allows us to access the
Gateway through any browser to change its settings,
to consult the measurements of any PDU connected
and to turn on and off the outlets for each PDU.
Gathering of data coming from each PDU is pro-
vided through various suitable interfaces (Perl API,
HTTP, MySQL, etc.) The setup for the measure-
ments includes the following steps:

1. Setting the IP Gateway with one accessible
from our network.

2. Mounting the Gateway and the PDU in the
data center.

3. Wire UTP cable from the PDU to the Gateway,
and back to the PDU, to create a ring in order
to provide for additional redundancy.

4. Connect the Gateway to the network.
5. Connect the AC plugs of the nodes of the sys-

tem under test to the outlets of the PDU. For
convenience is advisable to choose consecutive



Fig. 2. Web interface to the Scheleifenbauer Gateway

Fig. 3. PDU, Gateway and computing nodes connections

ones.

The equipment installed (Fig. 3) allows the dis-
play of consumption data from the PDU by directing
a browser to the IP address of the Gateway. The tab
“Measurements” allows us to query the data mea-
sured in the strip.

In Fig. 2 that shows the web interface, actual cur-
rent measurements (RMS) for nodes connected to
outlets 5 to 9 can be seen. The values correspond
to the actual nodes of the cluster which were used
in experimentation. Note that the current at idle is
not the same for all nodes, although they are iden-
tical models. Also it is worth mentioning that the
apparent power is the value of current times voltage,
expressed in V · A. The power factor value tell us
how much of the apparent energy is converted into
usable energy [10]. Values shown are close to 100%,
indicating a good design of the power supplies in the
compute nodes.

RealPower = VRMS · IRMS · PowerFactor/100

The cluster Tegasaste, used in the experiment, has
24 nodes, five of which connected to the PDU. The
front end node is a 4 x Intel(R) Xeon(TM) @ 3.000
GHz with 1 GB RAM. The computation nodes 20
to 24 have 2 x Intel(R) Xeon(TM) @ 3.200 GHz, 1
GB RAM each. The operating system was Linux
2.6.16.16-papi3.2.1 with gcc version 4.3.2 (Debian
4.3.2-1.1) and MPI 1.2.7.For communication between
nodes, an Infiniband(R) switch was used.

A. Measurement

To perform the measurements corresponding to a
particular experiment, we use an auxiliary computer,
connected to the same network as the Gateway. This
auxiliary computer allows the collection of data com-
ing from the PDU, while the algorithm of study is be-
ing executed in the parallel cluster, and the logging
all the events of interest. The company Schleifen-
bauer provides an API in Perl to access the measure-
ments. The Gateway has a register type of reading,
as current, power factor, voltage, etc.. The user only
has to choose the corresponding mnemonic and call
the ReadRegisters function. It is important to start
this Perl script several seconds before the launching
of the execution of the algorithm of study, to take ac-
count of the initial values of current in the different
nodes. Usually a 10 seconds delay was used. Finally
another script executes both the Perl script for the
PDU and the parallel algorithm in the CPUs.

The execution of this script generates a set of pairs
of files, each pair consisting in one file with PDU data
and one with CPU data. As already noted, the idle
values of current for each node vary, and so the pos-
terior current measurements will be affected by these
idle values. This situation is alleviated by offsetting
all the measurements, so they are always zero based.
The average idle value of current can be added later
on to get the real power consumption. Also, due to
the design of the serial protocol connecting the PDU
to the Gateway, a measurement takes at least 215
ms. A delay of approximately one second was ob-
served between a measurement and the event that
triggers it.

The CPU data file consists in time-stamped
events, that can be crossed with the PDU data file to
extract the values of current corresponding to each
segment of execution. The integration of these cur-
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Fig. 4. PDU overall current data, matrix–multiplication on 4 processors

rent values and the corresponding timestamps gen-
erates data of measured power consumption of the
parallel algorithm.

IV. Power performance model

In this section we propose an analytical power per-
formance model similar to the execution time model
introduced in Section II for the execution time of a
master–slave application. We will use the well–know
matrix–multiplication code to ilustrate the proposed
model. First, we study the power–aware behavior of
three different sequential matrix–multiplication im-
plementation. Following, we will study the commu-
nication part of the master–slave application in terms
on power consumption.

A. Master-slave matrix–multiplication parallel im-
plementation

To implement the transposed variant of the ma-
trix multiplication we used a master-slave schema,
with one master and p slaves, where the master pro-
cess does not compute. Although each node had two
processors, only one was used. The main script of
experimentation contained sizes from 1024 to 6400,
and every multiplication was performed 10 times. To
minimize effects related with the order of execution,
this was randomized. Figure 4 shows the overall cur-
rent profile for a 6400 by 6400 multiplication. The
study of the resulting 260 pairs of files with PDU and
CPU data allowed us to derive some facts.

• Current kept constant during the broadcast,
send and receive segments of code, but its level
was higher than that of idle state.

• The current of the master process kept constant
at roughly the same level while the slaves per-
formed the computation. We did not find any
difference between this level and the one related
to the communications segments.

• During the computation segments the current
reached its maximum, and again kept constant
throughout all the execution.

With all this data available we could estimate the
total power consumed by the execution. Taking into
account that power consumption is closely related
to time, it makes sense to begin with the time model
for the particular problem we are studying. From
the fragment of code corresponding to the core of
the algorithm executed, it could be derived that
the time depends on the number of floating points
operations 2n3 but also from the 2n3 accesses to
memory (reads) and the n2 writes to memory.

f o r ( i = 0 ; i < size ; ++i ){
f o r ( j = 0 ; j < size ; ++j ){
sum = 0 . 0 ;
f o r ( k = 0 ; k < size ; ++k ){
sum += A [ i ∗ size + k ] ∗ B [ j ∗ size + k ] ;
}
C [ i ∗ size + j ] = sum ;
}
}

To check if the writes to memory affected to the es-
timated power, a regression with positive coefficients
was performed using R [11] and the package nnls [12].
It turned out that the write operation did not con-
tribute to the power in this segment. The non zero
coefficient obtained, FlopMem, includes the contri-
bution of the two floating point operations and the
two reads from memory. Thus the estimated time
for the sequential case is simply:

Tcomp = 2n3 · FlopMem (4)

The total power of the sequential code is obtained
using the average current measured during the exe-
cution.

PWcomp = Tcomp · Currcomp (5)
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Fig. 5. Master-slave diagram of power consumption for matrix multiplication

B. Model for power consumption

Following the performance model introduced in
Section II, we propose a model power compsump-
tion based on equation 1. Each term of this equa-
tion contributes with a fraction of the total power
consumption, depending on the average current mea-
sured in each segment and its duration. Figure 5 de-
picts again the master-slave schema, this time show-
ing the power consumption. Note the contribution
of the master node, lower than the computing nodes
(has a lower p-state).

At bcast operation on eq. 1, it is necessary an
average of the current used during the segment, a
value that was obtained with the batch of executions,
and that it is the same across the processors involved
in the operation. The power consumption associated
to the broadcast can be computed using:

PWbcast = (p+ 1) · Tbcast · Currbcast (6)

where Tbcast is modeled by eq. 2.
The power estimation for the send by blocks seg-

ment is similar to the broadcast one. With the time
needed to send a sub-block of the matrix A, the es-
timated power for the whole segment can be calcu-
lated. A summation expression is used for the sake of
completeness and accuracy, although the total con-
tribution of this part is very small.

PWsnd = (

p∑
i=1

i+ p) · Tsnd · Currsnd/rcv (7)

where Tsnd is modeled by eq. 3.
The expression for the computation segment in-

cludes the p computing nodes and the contribution
of the master process while waiting for the slaves to
end the computation work:

PWcomp = p ·Tcomp ·Currcomp+PWMasterWait (8)

PWMasterWait = [Tcomp − (p− 1) · Tsnd] · Currwait

(9)
The last segment of this master-slave consists in

the master receiving the results from the slaves. The
expression is identical to the send segment one:

PWrcv = (

p∑
i=1

i+ p) · Trcv · Currsnd/rcv (10)

Finally the complete expression for the power of
the parallel execution is:

PWtotal = PWbcast + PWsend + PWcomp + PWrecv

(11)
Our analysis of the power consumption model must
end with a note on units. We have been using
time · Curr as a proxy for energy, but this has to
be corrected to be completely right. For convenience
we have omitted to multiply the current by the volt-
age, to get V · A. Finally we get to the value of
ApparentPower in W · h with the appropriate con-
version. We have considered the voltage constant
during the executions, averaging the voltage of the
outlets of the PDU.

C. Sequential matrix–multiplication power consump-
tion

To evaluate power consumption con sequetial
codes, we have chosen the matrix–multiplication of
dense matrices of size N×N . A dense matrix is a ma-
trix in which most of the entries are non zero. This
matrix-matrix multiplication involves O(N3) opera-
tions, since for each element Cij of C, we must com-
pute the dot product of rows with columns.

Cij =

N−1∑
k=0

Aik ·Bkj (12)

With the setup already in place, a test with se-
quential code was executed and measured with the
same sizes than the ones used in the parallel case.
Three different variants of the multiplication were
used, which we have called standard, transposed and
swapped. The standard variant is a word for word
translation of the equation (12).

But this naive implementation incurs in many
cache misses as the elements of the B matrix are
stored in row major format and are staggered in
memory. In order to alleviate this source of slow-
down, the matrix B is transposed so that memory ac-
cess will be contiguous for all three matrices. Finally,
the swapped algorithm performs partial sums, avoid-
ing the cache problem, but incurring in a greater
number of processor operations. Each version has
its own current footprint, lower in the case of the



Measured Modeled Error (%)
Size p = 4 p = 5 p = 6 p = 7 p = 4 p = 5 p = 6 p = 7 p = 4 p = 5 p = 6 p = 7

2000 25.73 25.452 25.338 24.265 26.14 25.29 24.73 24.33 1.59 -0.62 -2.39 0.27
3000 89.33 85.756 85.833 82.651 88.22 85.37 83.47 82.12 -1.25 -0.45 -2.75 -0.65
4000 212.73 201.985 200.7 196.969 209.11 202.36 197.86 194.64 -1.70 0.18 -1.42 -1.18
5000 412.46 393.303 387.977 383.807 408.41 395.23 386.44 380.16 -0.98 0.49 -0.40 -0.95
6000 714.54 670.201 669.880 656.017 705.73 682.96 667.77 656.92 -1.23 1.90 -0.31 0.14

TABLA I

Power consumption for matrix–multiplication with 4 to 7 slaves, in A · s

standard version due to the fact that the processor is
waiting for the operands to be fetched from memory.
However, the transposed version yielded the mini-
mum energy cost, since it was much faster.

V. Model Validation

The model we have developed depends on architec-
tural and algorithmic parameters that can be mea-
sured with the appropriate tests. We show between
brackets the values measured in our configuration.

• βbcast [5e-06 s] and τbcast [4.00641e-09 s], that
characterizes the time that the network takes to
broadcast a large message.

• βsnd/rcv [0.0009130886 s] and τsnd/rcv
[1.879013e-08 s], that characterizes the time
that takes a node to send a large message to
another node.

• FlopMem (1.879013e-08 s] essentially character-
izes the computing power of every node, and can
be obtained with a simple timed for-loop.

• Currbcast = Currsnd/rcv = Currcomm =
Currwait [0.2248810 A above idle current] that
is the current level at which the communication
operations are performed.

• CurrCmp [0.2921429 A above idle current] char-
acterizes the maximum current per node when
one processor is being used at full computation
rate.

Finally, table I shows values for measured and
modeled matrix multiplications with 4 to 7 slaves.
Column labeled E rror shows the relative error made
by the prediction. The very low error observed,
where highest error made is −1.7, allows to conclude
that our analytical model has been validated and pre-
dicts the power consuption.

VI. Conclusions

We have analyzed the power consumption of the
master–slave paradigm over an MPI application.
Similar to the performance model in terms of exe-
cution time that can be obtained for these kind of
implementation, it is possible to obtain an analyti-
cal expresion for the energy consumed by these codes
while executed on HPC systems. We have imple-
mented a power metered framework based on stan-
dard metered PDUs. The experimental infraestruc-
ture allows us to monitorize and model any applica-
tion that can be executed in our cluster. As a case
study, we model the matrix–multiplication algorithm
by an analytical formula. With this expression we
can predict the power consumed by the application
on our cluster knowing the problem size and number,

the number of slaves used and a set of parameters,
architectural–dependent.
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