
ParallDroid: A Framework for Parallelism in
AndroidTM.

Alejandro Acosta1 Francisco Almeida2 Vicente Blanco3

Abstract— The advent of emergent SoCs and MP-
Socs opens a new era on the small mobile devices
(Smartphones, Tablets, ...) in terms of computing ca-
pabilities and applications to be addressed. The effi-
cient use of such devices, including the parallel power,
is still a challenge for general purpose programmers
due to the very high learning curve demanding very
specific knowledge of the devices. While currently
are being made some efforts, mainly in the scientific
scope, the scenario is still quite far from being the de-
sirable for non-scientific applications where very few
applications take advantage of the parallel capabilities
of the devices. We propose ParallDroid (Framework
for Parallelism in AndroidTM), a parallel development
framework oriented to general purpose programmers
for standard mobile devices. Paralldroid allows the
rapid development of Native Android applications.
The user just implements a Java class and introduces
Paralldroid annotations. The Paralldroid system au-
tomatically generates the C/C ++/OpenCL native
code for this class. Paralldroid is provided as a plugin
integrated in the eclipse IDE, and it works transpar-
ently to the user. The ParallDroid transformation
model involves source-to-source transformations and
skeletal programming. A proof of concept is presented
to test the feasibility, productivity and efficiency of
the approach on synthetic applications.

Keywords— SoC, Android, source-to-source trans-
formation.

I. Introduction

System on Chip (SoC [1]) has been the enabling
technology behind the evolution of many of todays
ubiquitous technologies, such as Internet, mobile
wireless technology, and high definition television.
The information technology age, in turn, has fuelled
a global communications revolution. With the rise
of communications with mobile devices, more com-
puting power has been put in such systems. The
technologies available in desktop computers are now
implemented in embedded and mobile devices. We
find new processors with multicore architectures and
GPUs developed for this market like the Nvidia
Tegra [2] with two and five ARM cores and a low
power GPU, and the OMAPTM4 [3] platform from
Texas Instruments that Platform also goes in the
same direction.

On the other hand, software frameworks have been
developed to support the build of software for such
devices. The main actors in this software market
have their own platform: Android [4] from Google,
iOS [5] from Apple and Windows phone [6] from
Microsoft are contenders in the smartphone market.
Other companies like Samsung [7] and Nokia [8] have

1Dpt. Statistics and Computer Science, La Laguna Univer-
sity, Spain, e-mail: aacostad@ull.es

2Dpt. Statistics and Computer Science, La Laguna Univer-
sity, Spain, e-mail: falmeida@ull.es

3Dpt. Statistics and Computer Science, La Laguna Univer-
sity, Spain, e-mail: vblanco@ull.es

been developing proprietary frameworks for low pro-
file devices. Coding applications for such devices
is now easier. But the main problem is not creat-
ing energy-efficient hardware but creating efficient,
maintainable programs to run on them [9].

Conceptually, from the architectural perspec-
tive it can be viewed as traditional heterogeneous
CPU/GPU architecture where memory performance
continues to be outpaced by the ever increasing
demands of faster processors, multiprocessor cores
and parallel architectures. In particular, embedded
memory performance has become the limiting fac-
tor in overall system performance for SoC designs.
Technologies like Algorithmic Memory [10], GPUDi-
rect and UVA (Unified Virtual Addressing) from
NVidia [11] and HSA from AMD [12] are going in
the direction of an unified memory system for CPUs
and GPUs.

Under this scenario, we find a strong divorce
among traditional mobile software developers and
parallel programmers, the first tend to use high level
frameworks like Eclipse for the development of Java
programs, without any knowledge of parallel pro-
gramming (Android: Eclipse + Java, Windows: Vi-
sual Studio + C#, IOS: XCode + Objective C), and
the latter that use to work on Linux, doing their pro-
grams directly in OpenCL closer to the metal. The
first take the advantage of the high level expressive-
ness while the latter assume the challenge of high
performance programming. The work developed in
this paper tries to help bring these to worlds.

We propose the ParallDroid system, a devel-
opment framework that allows for the automatic
development of OpenCL parallel applications for
mobile devices (Smartphones, Tablets, ...). The
developer fills and annotate, using her sequential
high level language, the sections on a template that
will be executed in parallel. ParallDroid uses the
information provided in this template to generate
a new parallel program that incorporates the code
sections to run over the GPU. The approach does
not pose a parallelization of code in the traditional
sense (for example through the loop parallelization),
nor is a classical parallel skeleton, where the user
fills the sequential sections of a parallel skeleton. In
our case, starting from the specification given by
the programmer, the parallel execution pattern is
generated dynamically. ParallDroid can be seen as a
proof of concept where we show the benefits of using
generation patterns to abstract the developers from
the complexity inherent to parallel programs [13].

The advantages of this approach are well known:

• Increased use of the parallel devices by non-
expert users

• Rapid inclusion of emerging technology into
their systems

• Delivery of new applications due to the rapid
development time

We find the novelty of our proposal in the applica-
tion domain of our framework. Parallelism is often
restricted to the scientific domain applications [14],
[15], however ParallDroid is oriented to general pur-
pose programmers developing applications demand-
ing high performance computing that they are no
necessary scientific applications. We refer, for ex-
ample, to applications like those coming from aug-
mented reality, video and image processing, etc.

We chose to focus Paralldroid to Java developers
that use Eclipse to develop for the Android that seek
to exploit the GPU integrated into the device. Two
main reasons lead us to take that decision: Android
is an Open Source platform with a very high level
of market penetration and there is has a large com-
munity of developers using Java and Eclipse as the
development paradigm.

The paper is structured as follows, in section II we
introduce the development model in Android and the
different alternatives to exploit the devices, some of
the difficulties associated to the development model
are shown. In section III we present the ParallDroid
Framework using a synthetic application to illustrate
it, the performance of ParallDroid is validated in sec-
tion IV using a matrix multiplication problem and
a filtering median problem on colour image data.
Three different versions have been compared, the
Java original version, and the C Native and OpenCL
automatic generated versions. The computational
results prove the increase of performance provided
by ParallDroid at a low cost of development, where
the parallelism is hidden to the sequential develop-
ers. We finish the paper with some conclusions and
future lines of research.

II. The develpment model in Android

AndroidTM[16] is a software stack for mobile de-
vices that includes an operating system, middleware
and key applications (see Figure 1(a)). The Android
SDK provides the tools and APIs necessary to begin
developing applications on the Android platform us-
ing the Java programming language. It has a large
community of developers writing applications to ex-
tend the functionality of devices.

The SDK tools compile the application code into
an Android package (.apk) that holds the compiled
bytecodes (.dex) that will be executed on the Dalvik
processing virtual machine (Dalvik VM). The Dalvik
VM executes files in the Dalvik Executable (.dex)
format which is optimized for minimal memory foot-
print. The VM is register-based, and runs classes
compiled by a Java language compiler that have been
transformed into the .dex format by the included dx

tool (see Figure 1(b)). Each application lives in its
own security sandbox and by default they run in iso-

lation from other applications. Every Android appli-
cation runs in its own process, with its own instance
of the Dalvik VM. Dalvik has been written so that a
device can run multiple VMs efficiently. Android re-
lies on Linux for core system services such as security,
memory management, process management, network
stack, and driver model. The kernel also acts as an
abstraction layer between the hardware and the rest
of the software stack. The Dalvik VM is supported
on the Linux kernel for underlying functionality such
as threading and low-level memory management.

(a) Software stack

(b) Execution model

Fig. 1. The Android software stack and the execution model

Another available development tool is the Android
Native Development Kit (NDK). NDK allows to em-
bed components that make use of native code in An-

droid applications. The NDK enables to implement
parts of the application running in the Dalvik VM us-
ing native-code languages such as C and C++ (see
Figure 1(b)). This can provide benefits to certain
classes of applications, in the form of reuse of exist-
ing code and in some cases increased speed. The An-
droid framework provides several ways to use native
code, we use the Java Native Interface (JNI), where
developers can implement functions in native code
and to load them in the Java code using the function
System.loadLibrary(). Using native code does not
result in an automatic performance increase due to
the JNI overload, but always increases application
complexity, its use is recommended in CPU-intensive
operations that don’t allocate much memory, such as
signal processing, physics simulation, and so on.

To exploit the high computational capabilities on
current devices, the Android SDK provides Render-
Script, is a high performance 3D graphics rendering
computing API at the native level (similar to CUDA)
and a programming C language (C99 standard). The
main goal is providing the Android developers with
a low level API for high performance. During the
development process, the C99 code is compiled to
an intermediate code that is inserted into the An-
droid package of the application. When the appli-
cation runs, the intermediate code is compiled and
optimized for the device. This makes the code to be
portable and improves the performance due to the
native code. The RenderScript runtime would de-
cide where the code should be executed (CPU, GPU
or any other processing unit available) transparently
to the programmer. Currently only the CPU is used
and the load is distributed among the CPUs of the
system.

The development of applications to exploit the
computational capacities in these devices is a com-
plex task. Writing native applications through the
NDK requires the knowledge of the native language
and the Java Native Interface (JNI) also. Render-
Scrip partly simplifies the development of applica-
tions, however it is still a low level API that develop-
ers must learn to use [16]. This is one of the reasons
that motivated us to develop ParallDroid.

III. ParallDroid

A. The ParallDroid developing model

ParallDroid is designed as a framework to ease the
development of future parallel applications on An-
droid platforms. We assume that the mobile plat-
forms will be provided with a classical CPU and with
some kind of production processor like a GPU that
can be exploited thorough OpenCL. In the proposed
translation model, the developers define their prob-
lem as a Java class in the Android SDK. From this
class definition, we can generate automatically the
OpenCL/C code to be executed in the parallel de-
vice.

Just for illustration purposes, we consider the op-
eration of multiplying a vector by a scalar (scalar
multiplication). The code in Figure 2 shows a

sequential code to solve this operation using the
SDK, we can see the loop of lines 12-13 in rou-
tine scalarMultiplication where the vector is tra-
versed, and the goal is to process this operation
in parallel. Following the OpenCL programming
model, in ParallDroid each element of the vector can
be computed in parallel.

public class ScalarMultiplication {
public int scalar;
public int[]vector;

// Construct the array
public ScalarMultiplication(int size) {

vector = new int[size];
// Initialize array and scalar
//

}

public void scalarMultiplication() {
for (int i = 0; i < vector.size(); i++)

vector[i] = vector[i] * scalar;
}

}

Fig. 2. Secuential scalar multiplication.

The code of Figure 3 shows the specification
for the scalar multiplication operation in Parall-
Droid. The class is annotated as @Parallel to
denote a parallel class to be processed by Parall-
Droid. The developer must annotate the routine
scalarMultiplication to be launched as a Kernel
with the directive @Kernel. The arguments of a ker-
nel routine are doubled meaning, the number of ar-
guments indicate the number of dimensions for the
execution of the Kernel in the device, and the name
of the arguments reference the thread identification
when running in parallel. In this case, since we deal
with a one dimensional array, the routine in line 13
receives just one argument and the variable i iden-
tifies the work to be done by thread i in the kernel.
Note that, as usual in GPU programming, the loop
is removed.

@Parallel
public class ScalarMultiplication {

public int scalar;
public int[]vector;

// Construct the array
public ScalarMultiplication(int size) {

vector = new int[size];
// Initialize array
//

}

@Kernel
public void scalarMultiplication(int i) {

vector[i] = vector[i] * scalar;
}

}

Fig. 3. ParallDroid scalar multiplication developed by end-
user.

The increment of productivity under this approach
is clear, moreover when considering that ParallDroid
not only generates the OpenCL code but the C Na-
tive JNI implementation. Current version of Parall-
Droid imposes some constraints that could be over-

comes in the future. In the annotated class, we only
support primitive type variables, the code inside the
kernel must be Java and C99 compatible, more than
3 dimensions are not allowed in the kernel, and de-
pending on the hardware, we may have limitations
in the number of threads on each dimension.

B. The translation process

From the fields defined in the original annotated
Java class, ParallDroid generates automatically the
native code OpenCL/C and the Java implementation
necessary to launch the native implementation from
the NDK. Figure 4 shows the generation model where
the native OpenCL/C file and a refactorized Java
code that invokes the native code are shown. The
Java development tools (JDT) provide the syntax
tree (AST) of the annotated class defined by the user,
the AST eases the parsing and code generation. This
way, the process of code generation is transparent to
the end user.

Fig. 4. The development model in ParallDroid

For the scalar multiplication example, ParallDroid
generates the code presented in Figure 5, where the
method init (line 12) allocates the memory in the
native scope. Calls to the methods of lines 14-16
on Figure 6, allow getting the values holding this
variables in the Java object to the native scope, and
calls to lines 47-48 allows to restore the new values
calculated in the native scope into the variables of
the Java objects.

The translation process is supported in generic
skeletal patterns that ease the code generation. In
Figure 7 we show the whole translation process for
the native class generation and the initialization of
references for the array variable in the scalar mul-
tiplication example. Note how the generic pattern
is instantiated with the values corresponding to the
instance of generation. There are variable fields in
the generic skeletal pattern that are filled with those
extracted from the annotated class, in this case,

public class ScalarMultiplication {
public int scalar;
public int[]vector;

{ // Initializer method,
// runs before any other constructor
System.loadLibrary("ScalarMultiplication");

}

// Construct the array
public ScalarMultiplication(int size) {

vector = new int[size];
// Initialize array ...
init(vector);// Generated automatically

}

// Code generated for the native execution
public native void scalarMultiplication(int i);
public native void init(int[] vector);
public native void remove();
protected void finalize() throws Throwable {

remove();
}

}
// Executing the native code
int vSize = ...;
int numThreads = vSize;
ScalarMultiplication sm = new ScalarMultiplication(vSize);
// Launching numThreads Threads
sm.ScalarMultiplication(numThreads);

Fig. 5. Java code generated by ParallDroid.

the name of the class (ScalarMultiplication), the
name of the variable (vector) and its type (int).

IV. Computational Results

To validate the performance of the code generated
by our framework, we consider two different appli-
cations, a classical synthetic matrix multiplication,
and a median filtering of an image in the spatial do-
main [17]. In both cases, we implemented three ver-
sions of code, the ad-hoc version from a Java devel-
oper, ad-hoc C native implementation, and the na-
tive OpenCL code automatically generated by Par-
allDroid. The ParallDroid code generation is hun-
dred percent functional in the Android Emulator,
however, the OpenCL libraries are still not available
for Android. For that reason, for the validation of
the performance, the running times of the three ver-
sions have been measured on a system composed of
a CPU Intel i3 2130 with 4 cores and a GPU Nvidia
GT440.

Without loss of generality we hope that the com-
putational results obtained here will be extrapolated
to SoCs supporting Android and OpenCL since the
virtual machine, the libraries and architectures will
be analogous. To emulate the conditions of the An-
droid system the running times have been measured
under a Java Virtual machine. Times are expressed
in milliseconds. The input/output data times have
not been included in these running times, but the
transference times among the different memory sys-
tems are included, i. e., the data movement be-
tween the Java Virtual Machine and the main mem-
ory for the native code, and the time between the
main memory and the memory of the GPU. Labels
Java, C Native and OpenCL show, in tables and fig-
ures, the running time and the ratio with the Java

jintArray GENvector;
// The Kernel
const char* scalarMultiplication =

"__kernel void scalarMultiplication("
"int scalar, __global int* vector){"
"int i = get_global_id(0);"
" vector[i]=vector[i] * scalar;"

"}";

// The public native void scalarMultiplication(int i);
void JNICALL Java_ScalarMultiplication_scalarMultiplication(

JNIEnv *env, jobject obj, jint i) {
jclass c = (*env).GetObjectClass(obj);
// JNI to C data transformation
jfieldID IDscalar = (*env).GetFieldID(c, "scalar", "I");
jint scalar = (*env).GetIntField(obj, IDscalar);
jint *vector = (*env).GetIntArrayElements(GENvector, 0);
// Initialize OpenCL specific variables
...
// OpenCL device memory for arrays
cl_mem d_vector;
// Initialize OpenCL:GPU devices,command-queue,memory
d_vector = clCreateBuffer(clGPUContext,

CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
(*env).GetArrayLength(GENvector)*sizeof(int),
vector, &errcode);

// Load and build OpenCL kernel
kernelLength = strlen(scalarMultiplication);
clProgram = clCreateProgramWithSource(clGPUContext, 1,

(const char **)&scalarMultiplication,
&kernelLength, &errcode);

clBuildProgram(clProgram, 1, clDevices, NULL, NULL, NULL);
clKernel=clCreateKernel(clProgram,"scalarMultiplication"...);
// Launch OpenCL kernel
clSetKernelArg(clKernel,0,sizeof(int),(void*)&scalar);
clSetKernelArg(clKernel,1,sizeof(cl_mem),(void*)&d_vector);
globalWorkSize[0] = i;
clEnqueueNDRangeKernel(clCommandQue,clKernel,1,NULL,

globalWorkSize,NULL,0,NULL,NULL);
// Retrieve result from device
clEnqueueReadBuffer(clCommandQue,d_vector,CL_TRUE,0,

(*env).GetArrayLength(GENvector)*sizeof(int),
vector,0,NULL,NULL);

...
// Free OpenCL device memory for arrays
clReleaseMemObject(d_vector);
// C to JNI data Transformation
(*env).SetIntField(obj, IDscalar, scalar);
(*env).ReleaseIntArrayElements(GENvector, vector, 0);

}

Fig. 6. OpenCL/C code generated by ParallDroid.

Fig. 7. The generation process from skeletal generation pat-
tern

sequential version. Since the two problems are two-
dimensional, the execution of the OpenCL imple-
mentation launches sequentially kernels on one of the

Size
Java

Time Ratio
500x500 262 1x

1000x1000 6958 1x
2000x2000 58152 1x

Size
C Native

Time Ratio
500x500 160 1.6x

1000x1000 6591 1.1x
2000x2000 57142 1x

Size
OpenCL

Time Ratio
500x500 673 0.4x

1000x1000 5099 1.4x
2000x2000 27747 2.1x

TABLE I

Performance of the Matrix Multiplication

dimensions, i.e., for matrices of size n, we launch n
times the kernel using n threads each. Other combi-
nations of kernel/thread may produce different run-
ning times.

The annotated code for the matrix product can be
seen in Figure 8, it implements a two-dimensional
kernel where each thread is intended to calculate the
value of an element c[i][j] from the resulting ma-
trix. Square matrices of sizes 500, 1000, 2000 have
been tested. Table I and Figures 10 show the time
in milliseconds and the performance obtained. We
observe that for the small problem the C Native ver-
sion performs better with a ratio of 1.6x but when
the size of the problem increases the OpenCL im-
plementation is better. A ratio of 2.1x is obtained.
This ratio seems to increase on the OpenCL code
when the size of the problem is incremented.

@Parallel
public class MatrixMultiplication {

private int size;
private int[] A, int[] B, int[] C;
...

@Kernel
public void MatrixMult(int i, int j) {

int value = 0;
for (int k = 0; k < size; ++k) {

int elementA = A[j * size + k];
int elementB = B[k * size + i];
value += elementA * elementB;

}
C[j * size + i] = value;

}
}

Fig. 8. ParallDroid Kernel for a Matrix Multiplication.

The code in Figure 9 shows the ParallDroid kernel
for the median filtering problem considering colour
image data. Again it is a two-dimensional kernel, for
each pixel (x, y), the filtering is applied by replacing
each entry with the median of the neighbouring en-
tries (window) on each dimension RGB. Image data
of sizes 1024× 768, 3872× 2592 and windows of size
3 × 3, 6 × 6, 12 × 12, 24 × 24 have been tested. In

this case, the difficulty of the problem is incremented
with the size of the problem and with the size of
the window. Table II and Figures 11 show the time
in milliseconds and the performance. We observe
the same behaviour than in the former problems for
small problems the C Native version is the best,
and when the difficulty of the problem increases, the
OpenCL implementation overcomes them. In this
case, since we are dealing with larger sized problems
the performance is incremented reaching a value of
5.4x for the improvement ratio.

This computational experience proved that Parall-
Droid offers good performances with a very low cost
of implementation where the parallelism is hidden to
the sequential developer. As expected, in most of
the cases, the C Native implementation improves to
the Java implementation so, ParallDroid is an useful
tool also for the automatic generation of the native
code. As usual, to obtain a substantial gain from the
parallel implementation the size of the problem must
be large enough. At this point a comparative with
RenderScript would be mandatory. However since
RenderScript compiles the native code in running
time a fair comparative between both environment
will not be fair until the API Android/OpenCL be
provided.

@Parallel
public class MedianFilter {

private int window, height, width;
private int r[], g[], b[];
...

@Kernel
public void filter(int x, int y) {

int disp;
int valueR = valueG = valueB = 0;
for (int i = 0; i < window; i++) {

disp = ((x+i)*height);
for (int j = 0; j < window; j++) {

valueR += r[disp+(y+j)];
valueG += g[disp+(y+j)];
valueB += b[disp+(y+j)];

}
}
r[((x)*height)+y] = valueR/(window*window);
g[((x)*height)+y] = valueG/(window*window);
b[((x)*height)+y] = valueB/(window*window);

}
}

Fig. 9. ParallDroid Kernel for a Filtering Problem.

V. Conclusion and Future Work

We propose ParallDroid, a framework to generate
parallel OpenCL applications for Android. The Java
code annotated by the user is automatically trans-
formed in a native parallel version. The generation
process is automatic and transparent for the Java de-
veloper that has no knowledge on parallel program-
ming. Although there is still opportunity for the
optimization in terms of the memory transfer among
the different devices, the validation test performed
on two different problems prove that the results are
quite promising. With a very low development effort
the running times are significantly reduced. Parall-
Droid also contributes to increase the productivity

Size Execution
3x3

Time Ratio

1024x768
Java 57 1x

C Native 22 2.6x
OpenCL 74 0.8x

3872x2592
Java 607 1x

C Native 275 2.2x
OpenCL 353 1.7x

Size Execution
6x6

Time Ratio

1024x768
Java 97 1x

C Native 42 2.3x
OpenCL 87 1.1x

3872x2592
Java 1137 1x

C Native 542 2.1x
OpenCL 401 2.8x

Size Execution
12x12

Time Ratio

1024x768
Java 255 1x

C Native 131 1.9x
OpenCL 116 1.7x

3872x2592
Java 3220 1x

C Native 1554 2.1x
OpenCL 601 5.4x

Size Execution
24x24

Time Ratio

1024x768
Java 680 1x

C Native 472 1.4x
OpenCL 258 2.6x

3872x2592
Java 8333 1x

C Native 5212 1.6x
OpenCL 1585 5.3x

TABLE II

Performance of the Filtering Median Problem

in the parallel developments due to the low effort re-
quired. For the near future we plan to introduce fur-
ther optimizations in the memory transfers. We will
also focus now using ParallDroid for the paralleliza-
tion of basic libraries used for Android programmers
that could take advantage of the parallel execution.

Acknowledgment

This work has been supported by the EC
(FEDER) and the Spanish MEC with the I+D+I
contract number: TIN2008-06570-C04-03 and
TIN2011-24598

References

[1] SoCC, “IEEE International System–on–Chip Confer-
ence,” http://www.ieee-socc.org/, Sept. 2012.

[2] NVIDIA, “NVIDIA Tegra mobile processors: Tegra2
and Tegra 3,” http://www.nvidia.com/object/
tegra-superchip.html.

[3] Texas Instruments, “OMAPTMMobile Processors :
OMAPTM4 platform,” http://www.ti.com/omap4.

[4] Google, “Android mobile platform,” http://www.
android.com.

[5] Apple, “iOS: Apple mobile operating system,” http:
//www.apple.com/ios.

Fig. 10. Performance of Matrix Multiplication

Fig. 11. Performance of Filtering Median Problem, 1024x768

[6] Microsoft, “Windows Phone: Microsoft mobile operating
system,” http://www.microsoft.com/windowsphone.

[7] Samsung, “Bada: Samsung mobile operating system,”
http://developer.bada.com.

[8] Nokia, “Nokia Belle: lastest Nokia symbian platform,”
http://www.developer.nokia.com/.

[9] Alastair D. Reid, Krisztián Flautner, Edmund Grimley-
Evans, and Yuan Lin, “SoC-C: efficient programming ab-
stractions for heterogeneous multicore systems on chip,”
in Proceedings of the 2008 International Conference on
Compilers, Architecture, and Synthesis for Embedded
Systems, CASES’08, Erik R. Altman, Ed., Atlanta, GA,
USA, Oct. 2008, pp. 95–104, ACM.

[10] Memoir Systems, “Algorithmic Memory TMtechnology,”
http://www.memoir-systems.com/.

[11] Nvidia, “GPUDirect Technology,” http://developer.
nvidia.com/gpudirect.

[12] Anandtech, “AMD Outlines HSA Roadmap: Unified
Memory for CPU/GPU in 2013, HSA GPUs in 2014,”
http://www.anandtech.com/show/5493.

[13] I. Peláez, F. Almeida, and F. Suárez, “Dpskel: A skele-
ton based tool for parallel dynamic programming,” in
Seventh International Conference on Parallel Processing
and Applied Mathematics, PPAM2007, 2007.

[14] Ruymán Reyes and Francisco de Sande, “Automatic code
generation for gpus in llc,” The Journal of Supercomput-
ing, vol. 58, no. 3, pp. 349–356, 2011.

[15] BSC, “Montblanc project: High peformance comput-
ing with embedded and mobile devices,” http://www.
montblanc-project.eu/.

[16] Google, “Android developers,” http://developer.
android.com/index.html.

[17] J. Astola and P. Kuosmanen, Fundamentals of nonlinear
digital filtering, Electronic engineering systems series.
CRC Press, 1997.

