
An Advanced Authoring Tool for Augmented
Reality Applications in Industry

Jesús Gimeno, Pedro Morillo, Juan M. Orduña, Marcos Fernández 1

Abstract— The use of authoring tools has become
a valuable trend for the fast development of Aug-
mented Reality (AR) applications in industrial orga-
nizations. However, most of current AR authoring
tools are actually programming interfaces that are ex-
clusively suitable for programmers, and they do not
provide advanced visual effects. In this paper, we
propose an easy-to-use AR authoring tool oriented to
the development of AR applications for the execu-
tion of industrial sequential procedures. Unlike other
recent easy-to-use AR authoring tools, this software
framework allows non-programming users to develop
low-cost AR applications, including occlusion capa-
bilities, by means of the use of a Kinect sensor. The
evaluation results show that overlaying 3D instruc-
tions on the actual work pieces reduces the error rate
for an assembly task by more than a 75%, particularly
diminishing cumulative errors common in sequential
procedures. Also, the results show that the time re-
quired by non-programming users to develop the AR
prototypes using our tool was more than 90% lower
than the time required for developing the same pro-
totypes with computer graphics programmers.

Key words— Augmented Reality, Authoring Tools,
Non-immersive Desktop, Kinect, Occlusion

I. Introduction

AU gmented Reality (AR) systems have been
widely used in numerous applications such as

medical procedures, scientific visualization, manu-
facturing automation, cultural heritage and military
applications [1].
One of the main problems that prevents AR appli-

cations to become popular is the lack of AR author-
ing platforms that allow unqualified users in com-
puter graphics to easily generate AR applications.
There are popular software libraries like ARToolKit
[2] and ARToolKitPlus [3] that use OpenGL, VRML
or OpenSceneGraph [4] to represent the 3D models
on the real images in real time. However, the use of
these and others computer graphics libraries requires
programming skills to generate AR applications, and
every AR development should be constructed from
the scratch.
In order to avoid these problems, AR authoring

tools were proposed a decade ago [5]. Later, an ex-
tensible authoring tool that supports both scripting
and a drag and drop interface and real time inter-
preted input was developed [6]. A recent work even
classifies the existing AR tools depending on the use
of external libraries, and the programming knowl-
edge required for using them [7].
Assembly, maintenance and even repair tasks are

some of the direct application fields of AR tools,
and a lot of proposals have been made in these

1Departamento de Informática, Universidad de Valen-
cia, e-mail: {Jesus.Gimeno, Pedro.Morillo, Juan.Orduna,

Marcos.Fernandez}@uv.es

industrial areas. A recent work [7] classifies AR
development tools into two categories: AR-related
software framework and GUI-based AR authoring
tools.Nevertheless, once a mechanic begins to phys-
ically manipulating objects in an task, he does not
always need the visual information provided by the
display [8] to complete certain steps of a given in-
dustrial procedure. On other hand, although sev-
eral AR systems have been proposed for industrial
purposes, most of them superimpose the computer-
generated objects on the real view of qualified work-
ers. This forced superposition cause the occlu-
sion problem, which occurs in AR systems when a
computer-generated object closer to the viewer ob-
scures the view of real elements farther away along
the line-of-sight [9]. If the occlusion problem is not
properly addressed in the development of an AR sys-
tem for industrial purposes, then the developed tool
does not significantly facilitate workers their actual
on-the-job tasks [10].

Figure 1 shows an example of the occlusion prob-
lem when a custom AR system has been used in the
on-site repair process of a six-cylinder diesel engine.
Concretely, the pictures included in this figure show
the step when the first of six fuel injectors (mod-
eled using eye-catching green colors) is fitted into
the proper engine cylinder head. The top picture of
this figure shows how a non-ocludded 3D computer-
generated fuel injector is visualized over the engine
indicating the mechanic a misleading final location
of the cylinder head. On the contrary, the bot-
tom picture of the same figure shows how this aug-
mented fuel injector has been correctly occluded by
the foreground real objects in the scene, indicating
the proper location of the cylinder head within the
back side of the engine.

In this paper, we propose an easy-to-use AR au-
thoring tool including occlusion capabilities. This
AR tool, called SUGAR, has been intentionally de-
signed to enable a rapid prototyping of low-cost AR
systems. Unlike other authoring tools, our approach
uses Kinect [11] for computing a depth map of the
scene to produce occlusion effects. The application
examples show that, unlike other recent easy-to-use
AR authoring tools [7], the proposed tool can be
used as a general-purpose and low-cost framework
for generating different maintenance and repair AR
applications. Also, this paper describes some exper-
iments that test the relative effectiveness of AR in-
structions in assembly, maintenance and repair tasks.
The evaluation results show that overlaying 3D in-
structions on the actual work pieces reduced the er-
ror rate for an assembly task by 79%, particularly



Fig. 1. An example of the occlusion problem in an AR system
for industrial purposes

diminishing cumulative errors (errors due to previ-
ous assembly mistakes). Moreover, the time required
by non-programming users using SUGAR to develop
the AR prototypes was much lower (approximately a
95%) than the time required for developing the same
prototypes with expert programmers. These results
validates the proposed tool as a general-purpose AR
authoring tool for industrial AR applications.

The rest of the paper is organized as follows: Sec-
tion II describes in detail the proposed AR authoring
tool. Next, Section III shows different application ex-
amples of the proposed tool, and Section IV shows
the performance evaluation of AR instructions in an
assembly task using the proposed tool. Finally, sec-
tion V shows some concluding remarks and the future
work to be done.

II. An overview of SUGAR

SUGAR (which stands for System for the devel-
opment of Unexpensive and Graphical Augmented
Reality application) is an open-source software plat-
form designed to enable a rapid prototyping of low-
cost AR systems. Our framework is oriented to de-
velop complex AR software applications based on
procedural simulations, which are modeled following
an easy-to-use AR authoring editor. This AR editor
generates an exchange file, describing the AR proce-
dure, which can be loaded into different AR devices
not requiring high computational power.

SUGAR allows the creation of virtual contents
through an easy edition mechanism based on real
world photos. The user takes photos of the real sce-
narios to be augmented, and is on these photos where
the virtual content is edited. The ARToolKitPlus-
based markers are automatically generated with a
simple calibration step, in such a way that the user
should only paste the AR markers on the real object

in order to visualize the augmented scene. Therefore,
SUGAR bridges the gap between virtual information
and the real world, offering the user an easy way of
creating virtual contents according to reality.

The SUGAR modules can be classified in two
groups: description of the real world, and virtual
content edition. The first group includes those mod-
ules necessary for creating the scenarios where the
virtual contents will be displayed. Each scenario is
composed of an image of the real environment, some
AR markers that are generated automatically, and
a depth map (the latter one only is presented if a
Kinect is available when the photo is taken). In or-
der to create this scenario, two wizards guide the user
through some easy stages. The first stage, called the
PhotoKinect Wizard module, displays the real-time
image of the markers camera and allows taking pho-
tos storing at the same time the depth image. This
depth information will be used later in order to pro-
duce correct occlusions. The other wizard, called
Locations wizard, allows the user the creation of a
scenario from either a conventional photo or a photo
captured with AR markers. This wizard is also split
into four easy substages: first, the desired images
are loaded. Then, the wizard allows to draw a rect-
angle indicating a flat area where the markers can
be located. The two final substages consists of the
introduction of the flat area defined within the real
image and the number of AR markers to be used.
After these steps, the scenario is ready for editing
the virtual contents. The virtual models will be
adjusted to the size of the real object to be aug-
mented by using the size information introduced by
the user. At any moment, the user can select a sce-
nario and print the associated markers in order to
paste these markers on a real object. This simple
wizard allows a user with neither programming, nor
ARToolKit/ARToolKitPlus knowledge, the creation
of an AR marker with the proper size and the corre-
sponding associated configuration file.

After the creation of the scenarios, the other group
of modules includes the procedures for defining the
virtual information. The editor of SUGAR uses a
structure based on steps (denoted also as slides),
where each of them is associated to one of the sce-
narios previously created. The edition of the virtual
content can be split into three different stages: defi-
nition of the current step of the procedure, creation
of the virtual content associated to each slide, and
the definition of the corresponding evaluation tests
for this step, if necessary. The definition of the slides
includes some basic office functions: creation, order-
ing, text edition, aspect, associated video, associated
pdf files, etc. All these functions can be easily per-
formed, in a similar way to the creation of a conven-
tional graphic presentation.

The creation of virtual content consists of adding
some virtual elements that help to explain each step
to the scenario displayed in the slide. The virtual
elements can be created either from basic 3D objects
organized in an internal 3D library, or loading 3D



models previously created using Autodesk 3DS Max.
The included 3D library consists of cubes, spheres,
planes, cones, etc., which can be grouped to gener-
ate more complex models, and allows changing their
textures, colors, or other properties. Also, we have
developed an animation module based on keyframes
that allows to animate the virtual objects. In order
to allow the creation of 3D models that are appropri-
ate for the scenario to be augmented, the 3D scene
includes a template with the photo that is used as the
model, and even (depending on the type of scenery)
a mesh created from the picture taken with Kinect.
Using this reference, the user only has to locate the
virtual models on the template. This way of creat-
ing a scene, starting from a reference image, allows
the location of the virtual elements and their size
adjustment.

A. Software Architecture

The software architecture of SUGAR is based on
a modular approach oriented to develop procedural
AR systems. Basically, the SUGAR framework con-
sists of two applications: an easy-to-use editor for
AR procedures and an AR light viewer. Both ap-
plications share some software modules permitting
them to reuse 3D-tracking data structure models,
and visualization code. Figure 2 shows the software
architecture of the SUGAR framework for the de-
velopment of AR environments. Both applications
(“SUGAR Editor” and “SUGAR Viewer”) share the
kernel of the AR framework denoted as “Data Core”.
This kernel provides basic services for augmented re-
ality facilities as camera tracking, marker handling
and virtual object interaction.

Fig. 2. A modular view of the software architecture in
SUGAR

Although AR editor and AR viewer share this soft-
ware module, each application includes a different
user’s interface. Thus, the graphical user interface
of the AR editor has been developed on Windows

Forms and includes some components, developed on
OpenSceneGraph, in order to offer high-performance
3D graphical capabilities when users create and edit
the AR procedures. In this sense, the OpenNI soft-
ware library allows accessing the depth map of the
real scene using the Kinect device. Moreover, the
Microsoft DirectShow API enables high-quality play-
back of streaming video and audio to be attached
to the steps of the industrial (maintenance, repair
or even assembly) procedures. In contraposition to
this multiview 3D application, the AR viewer cor-
responds to a light Windows application, developed
on Qt/C++ [12], embedding a reduced version of
the OpenSceneGraph framework and including a re-
duced set of primitives for this 3D high-level library
tool. Since Qt/C++ is a cross-platform development
framework, the same source code for a Qt application
can be compiled on different operating systems with-
out changes. In this sense, the “SUGAR Viewer” has
been ported to Symbian and Android operative sys-
tems with minimum changes within the initial source
code. The reduced computation workload of this
multiplatform application allows the viewer to be ex-
ecuted on low-power general purpose processors to
execute the AR procedures in on-site industrial en-
vironments.

The “Data Core” module also includes the defi-
nition and the basic properties of the exchange file
format for the SUGAR framework, denoted as SAR
files. These files are generated by the AR editor to
be imported by the SUGAR multiplatform viewers.
Basically, the SAR files are zip-compressed archives
containing a structured representation of AR appli-
cations, and the corresponding multimedia content,
that can be attached to the steps of the modeled
AR procedures for industrial task. The organiza-
tion of the digital content, including the depth maps
obtained from the Kinect device, has been defined
using XML files, providing a flexible configuration
mechanism.

III. Application Examples

In order to validate our AR editor as an efficient
tool for the rapid prototyping of AR applications for
assembly, maintenance and repair purposes, we have
tested our tool in four different application examples
belonging to various industrial areas. Concretely,
these application examples are the following proce-
dures: the replacement of the cut heading within
a lathe machine (metal machining area), the assem-
bly of a computer starting from its basic components
(computer and electronics manufacturing area), the
repair of the admission system in a mobile lighting
tower (maintenance of heavy machinery area), and
the review of the spark plugs and the ignition coils on
a BMW M3 E92 (420CV) engine (automobile main-
tenance area). We have denoted these procedures
as PROC 1 to PROC 4, respectively. Table I shows
the amount of steps, gathered into groups, needed
to complete each one of the tasks. Since not all the
steps recommended by the manufacturer need visual



indications to be completed, this table also shows,
for each procedure, the number of steps that actu-
ally include AR contents.

TABLE I

Decomposition of the procedures in steps

Procedure Groups Steps AR Steps

PROC 1 6 51 26

PROC 2 5 25 20

PROC 3 7 58 32

PROC 4 4 15 10

In order to help in the completion of these tasks,
SUGAR authoring tool was used to prototype two
different AR systems (for each of the four procedures
considered): a computer assisted instruction system
using a TabletPC system (we will denote this AR sys-
tem as S2) and a computer assisted instruction sys-
tem using a head-mounted display (we will denote
this AR system as S3). Concretely, the S2 system
was developed on a Dell Latitude XT1 TabletPc (In-
tel Core 2 Duo at 1.2GHz, 2GB RAM, ATI Radeon
Xpress 1250, Windows 7 Professional) including a
LCD-CCFL 12.1-inch screen for outdoor environ-
ments, reaching up to 400cd/m2 of brightness. The
S3 system consists of the same Dell Latitude XT1
but connected to an ”AR Vision 3D HMD”, which
is a full stereoscopic video see-through AR device in-
cluding a binocular SVGA (1024x768) displays and
two separate 752x480 (60 FPS) color cameras. In or-
der to illustrate the considered application examples,
Figure 3 shows a snapshot of the proposed AR editor
(SUGAR Editor) when implementing Procedure 1.

Fig. 3. SUGAR Snapshot for Procedure 1

Figure 3 shows the interface of the proposed AR
editor for sequential procedures included in SUGAR.
The easy-to-use interface of the editor is very similar
to the most common graphic presentation programs
(such as Microsoft PowerPoint, Apple KeyNote,
Open Office Impress, etc.), and it consists of a large
view of the current step of the modeled procedure
along with a view of the rest of steps (as a slide
sorter) on the left side of the screen. The editor
allows non-programming users to create AR applica-
tions consisting of a set of sequential steps handled
by AR markers. In this sense, the toolbars on the top
of the window allow to include multimedia contents
such as video, images, text, manuals and AR infor-
mation into the steps of the AR procedure. Figure 4

illustrates the use of the S2 system when Procedure
1 was tested in a real industrial environment.

Fig. 4. Real use of S2 system in Procedure 1

IV. Performance Evaluation

The performance evaluation of augmented reality
authoring tools results in a complex task, since it is
very difficult to quantitatively show the utility or ef-
fectiveness of the proposed methodology and tools.
The measurement of costs reduction in software de-
velopment and maintenance neither results an easy
task. The main reasons are the lack of objective met-
rics in not only Augmented Reality, but also Virtual
Reality, and the qualitative and even fuzzy nature of
most software engineering studies [13].
A possible way of evaluating the performance

of Augmented Reality tools is a qualitative, user-
centered approach [14]. According to recent studies
[15], the observations and questionnaire are the ba-
sis for a qualitative analysis. The questionnaire con-
sists of several questions where the participants in
the evaluation of the AR tool can freely answer on
their experience of the AR system. The questions
are usually related to overall impression of the AR
system, experienced difficulties, experienced positive
aspects, what they would change in the system and
whether it is possible to compare receiving AR in-
structions to receiving instructions from an instruc-
tor. However, a qualitative approach does not allow
neither to compare different AR tools on a fair ba-
sis, nor to evaluate their performance in comparison
with traditional training or guidance tools. On the
contrary, a quantitative analysis can allow a fair com-
parison of different tools. Some metrics like cost ef-
ficiency, development time and maintainability have
been proposed for a quantitative analysis [16]. How-
ever, that work does not define concrete criteria for
assigning values to the three metrics, and only the
development time is accurately measured.
We propose a quantitative approach for the perfor-

mance evaluation of the AR tool in some industrial
environments. In order to measure the complexity
of the assembly, repair and maintenance tasks, we
have followed the criteria proposed in [17]. There-
fore, we have classified Procedure 1 as very complex,
Procedure 2 as normal, and Procedures 3 and 4 as
complex.
In order to measure the performance provided by



the AR systems prototyped with SUGAR, we have
first measured the average completion time required
by fifteen different users in order to completely exe-
cute each of the considered procedures. All the users
were experts technicians in their area, but a train-
ing session was performed prior to the performance
evaluation in order to allow the users to get in con-
tact with the AR technology. The same users were
used for performing the four procedures, in order to
avoid any skew in the results due to the different skill
of different populations. However, the fifteen users
were divided into four groups, and the sequence of
procedures executed by each group was different, in
order to avoid skews in the experimental results due
to the potential training with the technology. More-
over, not only it was the first time that the users
executed the considered procedures, but also any of
the groups repeated the same procedure using differ-
ent systems, in order to avoid the benefit with the
knowledge and experience that they acquire before.
For comparison purposes, the users also performed

the considered procedures exclusively using a printed
manual provided by the manufacturer. We have de-
noted this ”system” as S1. Table II shows the av-
erage completion times required when using each
system for all the procedures considered. As it
could be expected, the average completion times for
systems S2 and S3 are much lower than the ones
achieved with S1 system. Also, this table shows that
the times achieved with S3 (computer assisted in-
structions (CAI) using a head-mounted display) are
lower than the ones achieved with S2 (CAI using a
TabletPC display), reaching even less than half the
time required for the same procedure with system S1
(in Procedures 1, 3 and 4). These results show the
significant benefits that AR systems can provide to
assembly, repair and maintenance tasks.

TABLE II

Completion times with different systems

Procedure S1 S2 S3

PROC 1 4h 30min 2h 30min 1h 45min

PROC 2 50min 35min 30min

PROC 3 6 h 3h 30min 2h 45 min

PROC 4 2h 1h 15min 50min

In order to get a more in-depth analysis of the re-
sults shown in Table II, we have measured the mis-
takes made when executing the AR procedures for
all the considered experiments. Table III shows the
average number of steps in the experiments that were
repeated by the qualified participants because of hu-
man errors. As it could be expected, the direct visual
guidance provided by the augmented reality devices
in systems S2 and S3 resulted in a significant decrease
in the number of repeated stages, compared to the
use of manufacture’s manuals in S1. The system S2
provides the lowest number of repeated stages. Since
the execution of assembly and maintenance/repair
tasks are often incremental processes, where the re-
sults of previous steps are the input of next steps,
undetected mistakes in preceding stages (denoted as

cumulative errors) result in repeating all the previ-
ous affected tasks, starting where the mistake was
committed. For this reason, the number of the re-
peated tasks grows exponentially as the errors made
by the participants increase. Nevertheless, the differ-
ences between S2 and S3 systems become significant
even if taking into account this fact, showing that
immersive augmented reality does not provide the
best performance in industrial environments.

TABLE III

Number of repeated stages when completing the

ARprocedures

Procedure S1 S2 S3

PROC 1 12.25 2.65 3.30

PROC 2 7.51 1.26 4.65

PROC 3 14.13 2.40 3.60

PROC 4 4.33 1.23 1.57

Nevertheless, Tables II and III do not actually
measure the performance of SUGAR, but the pro-
totypes developed with this AR authoring tool. In
order to measure the performance achieved with
SUGAR, we have asked two different teams to de-
velop the prototypes whose results are shown in Ta-
ble II. One of the teams (we will denote this one
as Team 1) was composed of AR programmers, and
the other one (we will denote this one as Team 2)
was exclusively composed of expert technicians. As
a reference, we asked Team 1 to develop the proto-
type following the classic AR development approach,
by writing, compiling and debugging source code.
In this sense, Team 1 developed the AR prototypes
using Microsoft Visual Studio 2010 as C++ devel-
opment framework, OpenSceneGraph 2.9.7 as 3D
graphics visualization toolkit and ARToolKitPlus 2.2
as software library for AR purposes. In order to mea-
sure the performance of SUGAR, we asked Team 2
to develop the same prototypes with SUGAR.
Table IV shows the development times (in working

days) required by each team. The column labeled
as “Team” shows the team, the column labeled as
“Param.” shows the specific parameter of the devel-
opment time measured by each row, and the other
four columns shows the results for each procedure.
The parameters measured are the following ones:
SLOC measures the final number of source lines of
code included within the final AR prototype, while
FPS indicates the frame-rate (in frames per second)
achieved using the test hardware. The parameter
CT measures the number of working days required
by the team for completing the coding stage of the
prototype. The parameter DT measures the number
of working days required by the team for completing
the debugging/adjusting stage, and the parameter
TT measures the total time required for the devel-
opment of the prototype (the sum of CT and DT
parameters).
Table IV shows that the size of the source code

generated by SUGAR is roughly a 10% higher than
the source code created by traditional AR program-
ming. However, this slight increase of the source code



TABLE IV

Source-code sizes and development times

Team 1

Param. PROC 1 PROC 2 PROC 3 PROC 4

SLOC 71853 64710 76254 53695

FPS 28 44 32 50

CT 95 76 108 59

DT 15 10 17 6

TT 110 86 125 65

Team 2

SLOC 79215 71523 37749 60101

FPS 31 40 35 50

CT 3 3 2 2

DT 1 1 2 1

TT 4 4 4 3

does not have an effect on the graphic performance of
the AR application. Moreover, Table IV also shows
that the time required by non-programming users
with SUGAR to develop the AR prototypes are less
than 5% of the ones required for developing the same
prototypes with programmers. These differences of
orders of magnitude show the potential that an in-
tuitive AR authoring tool like SUGAR can provide
to industrial environments. Moreover, the ease of
use of SUGAR allows to avoid the need for pro-
gramming skills, exclusively requiring the expertise
of technicians in that field for developing AR pro-
totypes. Also, any potential change required by the
prototype can also be made by technicians, without
the need of programming skills.

V. Conclusions

In this paper, we have proposed an easy-to-use AR
authoring tool with occlusion capabilities which al-
lows the easy creation of interactive augmented re-
ality applications without any programming knowl-
edge. Unlike other recent proposals, our tool does
not rely on expensive or unavailable 3D models, and
it uses Kinect for computing a depth map of the
scene.

The performance evaluation results show that the
registration of geometric models to the real-world
counterparts in industrial procedures significantly fa-
cilitate workers their actual on-the-job tasks. The
direct visual guidance provided by the AR devices
significantly decrease the number of repeated stages
when compared to commonly used manufacture’s
manuals. Also, the time required by users with non-
programming skills to develop the AR prototypes us-
ing our tool was much lower than the time required
for developing the same prototypes with expert pro-
grammers when following a classical development of
AR systems. These results shows the potential of
our approach and validates it as a general-purpose
AR authoring tool for industrial AR applications.

Acknowledgements

This work has been jointly supported by the Span-
ish MICINN and the European Commission FEDER
funds under grants Consolider-Ingenio CSD2006-
00046 and TIN2009-14475-C04-04.

References

[1] S. Cawood and M. Fiala, Augmented Reality: A Practical
Guide, Pragmatic Bookshelf, 2008.

[2] H. Kato and M. Billinghurst, “Marker tracking and hmd
calibration for a video-based augmented reality confer-
encing system,” in Proceedings of International Work-
shop on Augmented Reality (IWAR’99), 1999, pp. 85–94.

[3] D. Wagner and D. Schmalstieg, “Artoolkitplus for pose
tracking on mobile devices,” in Proceedings of 12th Com-
puter Vision Winter Workshop (CVWW’07), 2007, pp.
139–146.

[4] D. Burns and R. Osfield, “Open scene graph a: Intro-
duction, b: Examples and applications,” in Proceedings
of the IEEE Virtual Reality Conference 2004 (VR 2004),
2004, p. 265.

[5] Matthias Haringer and Holger T. Regenbrecht, “A prag-
matic approach to augmented reality authoring,” in Pro-
ceedings of the 1st International Symposium on Mixed
and Augmented Reality, Washington, DC, USA, 2002,
ISMAR’02, pp. 237–, IEEE Computer Society.

[6] H. Seichter, J. Looser, and M. Billinghurst, “Composar:
An intuitive tool for authoring ar applications,” in In
Proceedings of the IEEE/ACM International Symposium
on Mixed and Augmented Reality (ISMAR’08), 2008, pp.
177–178.

[7] M.J. Wang, C.H. Tseng, and C.Y Shen, “An easy to use
augmented reality authoring tool for use in examination
purpose,” Human-Computer Interaction, vol. 332, pp.
285–288, 2010.

[8] Steven J. Henderson and Steven Feiner, “Evaluating
the benefits of augmented reality for task localization in
maintenance of an armored personnel carrier turret,” in
Proceedings of the 2009 8th IEEE International Sympo-
sium on Mixed and Augmented Reality. 2009, pp. 135–
144, IEEE Computer Society.

[9] David E. Breen, Ross T. Whitaker, Eric Rose, and
Mihran Tuceryan, “Interactive occlusion and automatic
object placement for augmented reality,” Computer
Graphics Forum, vol. 15, no. 3, pp. 11–22, 1996.

[10] S. Bong-Kee Sinb P. Sang-Cheol, L. Sung-Hoon and
L. Seong-Whan, “Tracking non-rigid objects using prob-
abilistic hausdorff distance matching,” Pattern Recogni-
tion, vol. 38, no. 12, pp. 2373–2384, 2005.

[11] Eduardo Souza Santos, Edgard A. Lamounier, and
Alexandre Cardoso, “Interaction in augmented reality
environments using kinect,” in Proceedings of the 2011
XIII Symposium on Virtual Reality, Washington, DC,
USA, 2011, SVR ’11, pp. 112–121, IEEE Computer So-
ciety.

[12] J. Blanchette and M. Summerfield, C++ GUI Program-
ming with Qt 4, Open Source Software Development Se-
ries. Prentice Hall, 2008.

[13] J. Seo and S. OhM, “Pvot: An interactive authoring tool
for virtual reality,” International Journal of Computer
Science and Network Security (IJCSNS), vol. 7, no. 4,
pp. 17–26, 2007.

[14] M. Traskback, T. Koskinen, and M. Nieminenl, “User-
centred evaluation criteria for a mixed reality authoring
application,” in Proc. of Tenth International Conference
on Human-Computer Interaction (HCI), 2003, pp. 1263–
1267.

[15] S. Nilsson, B. Johansson, and A. JÃ¶nsson, The Engi-
neering of Mixed Reality Systems, chapter A Holistic Ap-
proach to Design and Evaluation of Mixed Reality Sys-
tems, pp. 33–55, Human-Computer Interaction Series.
Springer, 2010.

[16] Daniel F. Abawi, Jose Luis, Los Arcos, Michael
Haller, Werner Hartmann, Kalle Huhtala, and Marjaana
Traskback, “A mixed reality museum guide: The chal-
lenges and its realization,” in Proceedings of the 10th
International Conference on Virtual Systems and Multi-
media (VSMM 2004), 2004.

[17] Donald J Campbell, “Task complexity: A review and
analysis,” Academy of Management Review, vol. 13, no.
1, pp. 40, 1988.


