
1

Physical implementation of a reconfigurable cache. Optimization possibilities.

Santana Gil, A. D.

General Physics Dept.
Faculty of Physics

University of Havana

Havana, Cuba

adavid@fisica.uh.cu

Benavides Benitez, J.I.

Computer Architecture
Dept.

Polytechnic School,

University of Cordoba

Cordoba, Spain

el1bebej@uco.es

Hernandez Calviño, M.

General Physics Dept.
Faculty of Physics

University of Havana

Havana, Cuba

mhernan@fisica.uh.cu

Herruzo Gómez, E

Computer Architecture
Dept.

Polytechnic School,

University of Cordoba

Cordoba, Spain

el1hegoe@uco.es

Abstract—The microprocessor performance is highly

dependent on cache size and structure. This work present two

alternatives of a reconfigurable cache implemented on FPGA,

with twelve cache modes and a test platform based on the

MicroBlaze soft processor. Some experimental results are also

presented. In addition, two methods for dynamic

reconfiguration of the implemented cache are introduced.

Finally, interesting conclusions about the work carried out are
presented.

Keywords-component; Reconfiguration, Cache Memory,

FPGA, MicroBlaze;

I. INTRODUCTION

The cache memory has an important role in computer
system performance. The design of a cache is an
optimization problem that relates with the maximization of
the hit ratio and the minimization of the access time. The
cache performance has an important dependency on cache
size, associativity level, number of words per block and
cache latency.

The best cache configuration depends on the application
characteristics and design constraints, like performance,
power consumption or area, which has promoted the
diversity of cache architectures found in different processors.
Since no cache organization satisfies the requirements of all
applications, a promising approach to this problem is to add
reconfiguration capabilities to the cache memory.

Taking in account the constraints involved in the problem
and the desired features, cache designers proposed three
well-known cache organizations: direct mapped cache, fully
associative cache and set associative cache. Each
organization can be better for a specific workload.

The main research lines, on cache memories, mainly
focused on cache memories architecture simulation for
performance analysis, low power cache systems,
implementation on FPGAs of fixed and reconfigurable cache
system for testing theoretical designs purpose and analysis of
cache implemented for high end or embedded processors.

In this paper, we propose two methods for dynamic
reconfiguration of a properly designed cache memory. The
reconfigurable cache memory, implemented on FPGA, bases
its functionality on our previous paper [1] but the new design

has 12 different cache modes (4 additional modes than
previous implementation) and 6 auxiliary modes for testing
and basic performance analysis and enhances the previous
one for obtaining resource usage and speed improvement.

The paper is organized as follows: In Section II we
review previous related work in reconfigurable cache.
Section III describes the proposed design, implementation,
and testing platform. In Section IV we present tests and
results. In Section V we propose two methods for dynamic
reconfiguration. Finally, Section VI presents the conclusions
and future work.

II. PREVIOUS WORK

Ranganathan et al. [2] propose a cache memory capable
of, dynamically, divide the cache SRAM arrays into multiple
partitions used for different processor activities. These
activities can benefit applications that otherwise would not
use the storage allocated to large conventional caches.

 They used a modification of the CACTI [3] analytical
model to analyze the design. The system shows a small
impact on cache access time. They also evaluate one
representative use of reconfigurable caches instruction, reuse
for media processing and obtain IPC improvements ranging
from 1.04X to 1.20X in simulation across eight media
processing benchmarks.

Cheng L. et al.[4] propose a reconfigurable cache that
improve not only the overall performance but also the energy
consumption for embedded system. They introduce a novel
reconfigurable algorithm that dynamically detects the phase
changes and automatically select the optimal cache
configuration. It comes as no surprise that such a mechanism
exhibits some form of performance loss, but the expectation
is that the loss is small, compared to the energy saving
improvement. They use as starting point for they work the
proposition of Albanesi et al [5].

Only a small percent of paper published about cache
memory attempts a physical implementation. Most of them
are only simulated theoretical models.

Based on the above referenced papers, we presented in a
previous work [1] an implementation of a reconfigurable
cache on FPGA with eight cache modes including the
analysis of basic test results. Now, in this paper, we present a

mailto:el1hegoe@uco.es

2

cache memory/controller with four additional cache modes
compare with the previous work [1]. The new added modes
correspond to 4-way set associative cache organization with
1, 2, 4 or 8 words per block. This means that new design can
work as Direct Mapped, 2-Way Set Associative or 4-Way
Set Associative cache with 1, 2, 4 or 8 word per block in
each case.

III. RECONFIGURABLE CACHE

We implemented the new design using a Spartan3E-
MicroBlaze Development Board. A general structure of the
test platform is shown in Fig. 1.

MicroBlaze
RAM: 16 KB

(I:8KB + D:8KB)

PLB BUS

RS232

TX RX

Cache

PC
ADDR

DATA

DDR

FPGA xc3s1600fgg320

Spartan 3E MicroBlaze Dev. Board

MPMC

N
P

I

USER BUS

P
LBPLB

N
P

I

Figure 1. New test platform.

We use the capabilities of the Multi Port Memory
Controller (MPMC) from Xilinx, to optimize access to the
external RAM (DDR on board) depending on the number of
words (1, 2, 4 or 8) per block in cache line. The cache
memory/controller connects directly to the Processor Local
Bus (PLB) of the MicroBlaze instead of using parallel ports
like in the previous paper [1].

It is well known that the MicroBlaze processor has its
own cache memory. This cache is a fixed direct mapped type
with one word per block and can be enabled at design time if
desired. In our design, the MicroBlaze cache remains
disabled.

The main part of the implemented reconfigurable cache
memory/controller is a group of BRAMs properly connected
to allow different logical arrangements. The minimum block
size is a 1K. The BRAMs width for data, tag, valid bit and
LRU bit is 32, 14, 1 and 1 in turn.

If we use 2 address bits to select appropriately four1K
BRAM blocks, combined with its 10-bit address, we can
build 4 K module suitable for a direct mapped cache.
However, selecting the same four blocks in a parallel
fashion, we can build a 4-way associative cache of 1 K size.
An intermediate configuration, consistent with a 2-way 2 K
size associative cache is also possible, using1address bit to
select one of two modules of 2 K size each. Four modes; 1,
2, 4, and 8 words per cache line are also available for each
associativity level.

The desired cache mode value is stored on the cache
mode register (CMR). Based on CMR value, the control
block (CB) arranges properly the BRAMs group mentioned

above. At each memory access, the CB triggers the
corresponding state machine located on the execution block
(EB) to start performing the selected cache mode. The
resulting hit or miss event increments the corresponding 16-
bit wide counter. A simplified block diagram of the cache
memory/controller is presented in Fig. 2.

The implemented cache has data/instruction capability. In
this paper, all tests reported are for the cache connected to
function as a data cache as observed in Fig. 1.

MODE

CTRL
CONTROL

BLOCK
(Cache mode

register)

BUS PLB

DATA/ ADDRESS

EXECUTION
BLOCK

DATADATA
BRAMs
BLOCK

NPI

A
D

D
R

C
TR

L

Figure 2. Simplified block diagram of the cache memory/controller.

We implemented two alternatives of the cache
memory/controller. The first, option (A), has a maximum
size of 4K, achieved for modes with direct mapped structure.
Due to the limited amount of BRAMs on the FPGA, it was
not possible to maintain the same memory size for modes
with larger associativity. In this variant, an increase of the
associativity level reduces the cache size when we move to
2-way (2K size) and 4-way (1K size) set associative modes.

For a particular test analysis and a better comparison with
cache simulator results [6] we implemented a second (B)
variant. This is a1K size limited variant, to make the size
constant with the increase of associativity.

We also developed an embedded application for the
MicroBlaze processor to allow the control of the test
platform from a PC and facilitate the debugging process.
Both cache variants were exhaustive tested to detect and
eliminate bugs.

For more elaborated tests, we use the memory traces
accompanying the SMPCache [6] simulator. We developed
an application on LabView to control the test platform, run
selected traces, and process statistical data collected from the
reconfigurable cache.

IV. TEST AND RESULTS

We ran the memory traces for EAR, COMP, HYDRO
and CEXP algorithms, from the SMPCache [6] package, on
the reconfigurable cache for the 12 modes in both variants.

In Fig. 3 we present the results of the tests for the EAR
algorithm for all modes of both variants. For A variant, (Fig.
3a), we observe that a reduction in the cache size increase the
miss rate, as expected. However, the increase of the
associativity has no noticeable effect on the miss rate. This

3

suggests that, as far as concerning the miss rate, the cache
size is more important than the associativity.

For B variant, (Fig. 3b), the direct mapped and 4-way
associative modes have the same performance. In 2-way
associative modes, the miss rate is higher than similar modes
on variant A. In this case, increase associativity is not helpful
to compensate the low cache size. A similar trend is
observed for the algorithms CEXP and HYDRO.

Figure 3. Tests result for EAR algorithm for the two variants of cache

memory/controller: a) Size decreases with associativity variant, b) 1K fixed

size variant.

Nevertheless, a different behavior is observed for COMP
algorithm tested on variant B cache, (Fig. 4b). In this case,
the low cache size does not affect significantly the direct
mapped modes. For option (A) cache, the behavior is similar
to that observed when running the above-cited algorithms.

We configured the SMPCache [6] to replicate each mode
of the reconfigurable cache and ran the memory traces of the
same algorithms. We confirmed the behavior observed in
each test and validated once again our design.

Figure 4. Tests result for COMP algorithm for the two variants of cache

memory/controller: a) Size decreases with associativity variant, b) 1K fixed

size variant.

V. METHODS FOR DYNAMIC RECONFIGURATION

Studies have demonstrated that the optimization of the
cache performance is a difficult task. Numerous papers
[7,8,9,10,11,12,13] propose methods for a dynamic
adjustment of selected parameters to achieve low miss rate
values. Motivated by some of these ideas and the fact that we
implemented and successfully tested a cache with
reconfigurable capability, we propose two methods for cache
optimization. These methods should be as simple as possible
to allow them be implemented on hardware without
excessive FPGA resource usage. Then, the module can be
attached to the control port of the cache, allowing automatic
reconfiguration.

The first method bases on the detection of program
phases as described in [14] and the second one on the
dynamic adjustment of the cacheable address boundaries of
the external memory.

The two methods have a common initial feature. During
execution, we start defining a time window of width, NACC,
characterized by a predefined number of memory accesses,
e.g. 500. Beyond this point, both methods differ as follows:

A. Method I: Detection of program phases.

We split the external RAM in a number of address
segments, NSEC, e.g. 256, and define a bit vector of this
length. Every bit in the vector represents a segment of RAM.

When an access takes place, we calculate the segment
accessed and set to one the corresponding bit vector. Once
the number of accesses, NACC, is completed, we compute the
sum, B, of all the bits set to one in the past time window. B
roughly indicates how localized or spread the accesses to
RAM have been. The vector is cleared after each time
window. In parallel, we also compute the coefficient:

 D = |Bn–Bn-1| (1)

where Bn and Bn-1 are actual and preceding values of B.

If D is greater than a pre-defined threshold value, we

assume that the algorithm has entered in a new different
phase and the change must be analyzed in order to decide if
reconfiguration is needed.

We base the next analysis step on the miss rate. If the
miss rate between two consecutive windows is over a desired
value then the reconfiguration process is applied, selecting
configurations with higher associativity. If the miss rate
maintains below the established value for a given number of
consecutive time windows, the system moves to 1 way lower
associativity mode. We developed an application in
LabView to simulate the algorithm, but the method is still
under evaluation to analyze the real impact on system
performance.

 Method II: Automatic selection of memory range to

cache.
The cache memory of the MicroBlaze processor is

configured at design time. The user can set the address range
of the cached external memory. Therefore, it is possible to

4

optimize the system performance if the range is accurately
selected but it is difficult to have a previous knowledge of
the algorithm behavior. This method is an effective solution
for small cache systems because the effect of restricting the
range to be cache is equivalent to increase the cache size.

Although we do not use the MicroBlaze own cache
system [15], this idea motivates us to develop the second
method we are proposing.

For this method, we split the external RAM in a number
of address segments, NSEC, e.g. 256 and define a vector that
stores the total number of accesses for each segment in a
certain time windows.

Next, we compute the position of the “center of mass”,
MC, of the resulting histogram and locate the center of the
cache window at that point.

Now, moving up and down from the MC position and
following an iterative process, we find a region with
symmetrical boundaries from the MC position, that contains
a predefined percent (e.g. 90%) of total memory accesses
occurred in the past time window. These boundaries define
the new cache region that will be used in the next time
window. The process repeats itself during all program
execution and the result is a cache window automatically
adjusted to cache the memory region with majority accesses
in each time interval. The method can be implemented for
both a reconfigurable and a fixed cache memory.

VI. CONCLUSION AND RECOMENDATION

We successfully implemented and tested a reconfigurable
cache memory/controller. The module has 12 cache modes
and 6 complementary modes for simplify testing and allow
performance analysis. In the reconfiguration process only
lasts one clock cycle is controlled by the microprocessor,
writing a command to the cache memory/controller. Status
parameters like current hit and miss count, and actual
running mode can be read from the controller at any time.

Two variants for the reconfigurable cache/controller were
presented. In addition, we analyzed the test results for
different algorithms in both variants.

We also proposed two methods, still under development,
for dynamic reconfiguration. The first method bases on
detecting program phases changes. The second one bases on
continuously adjusting the external memory region to cache.
Taking into account the obtained simulation results, these
two methods will be hardware implemented in the future and
added as a smart module, to control, dynamically, the
reconfiguration process.

In a future work, the cache memory/controller also will
be capable to differentiate among kind of miss events
(capacity or conflict misses). This could help to carry out an
optimal reconfiguration process choosing between, to
increase the associativity or the cache size.

REFERENCES

[1] Gil, A.D.S. Benitez, J.I.B. i o e E ”
Reconfigur b e che I p e ented on n FP A” 2010 Intern tion

Conference on ReConFigurable Computing and FPGAs, 2010, 250 –
255, DOI: 10.1109/ReConFig.2010.26.

[2] R ng n th n P Ad e S nd Jouppi N P “Reconfigur b e c ches

 nd their pp ic t ion to edi processing” A SI AR
Computer Architecture News, 2000, 28(2), 214-224. doi:

10.1145/342001.339685.

[3] CACTI 4.0 Tarjan, David; Thoziyoor, Shyamkumar; Jouppi, Norman

P. HPL-2006-86 20060606, 2006.

[4] Chen, L., Zou, X., Lei, J., & Liu, Z. (2007). Dynamically
Reconfigurable Cache for Low-Power Embedded System. Third

International Conference on Natural Computation (ICNC 2007) Vol
V, (Icnc), 180-184. Ieee. doi: 10.1109/ICNC.2007.346.

[5] A bonesi D “Se ect i e c che w ys: on de nd c che resource

 oc t ion” Journ of Instruct ion Le e P r e is y 2002

[6] Miguel A. Vega, Raúl Martín, Francisco A. Zarallo, Juan M.
Sánche Ju n A e “SMPCache: Simulador de Sistemas de

Memoria Caché en Multiprocesadores Simétricos” XI Jornadas de
paralelismo, Granada, Spain, Sep. 2000.

[7] Ki A K So ni nd A Ty gi “A Reconfigur b e u t ifunct

ion Computing Cache Archit ect ure” IEEE Tr ns ct ions on VLSI
Vol. 9, No. 4, pp. 509-523, Aug., 2001.

[8] Zhang, C., & Vahid, F. A self-tuning cache architecture for embedded

systems. ACM Transactions on Embedded Computing System, Vol.3,
May. 2004.

[9] Ting, Y., & Chen, B.. Combining select ive cache line replacement
and active management for data caching. Thesis. 2005.

[10] Peng, M., Sun, J., & Wang, Y. A Phase-Based Self-Tuning Algorithm

for Reconfigurable Cache. First Internat ional Conference on the
Digital Society (ICDS'07), 27-27. Ieee. doi: 10.1109/ICDS.2007.2,

2007.

[11] Zhang, C., Vahid, F., & Najjar, W., A highly configurable cache
architecture for embedded systems. Proceedings of the 30th Annual

Intern tion Sy posiu on o puter Architecture (IS A’03) June
2003.

[12] Balasubramonian, R., & Albonesi, D. Memory Hierarchy

Reconfigurat ion for Energy and Performance in General Purpose
Architecture. Proc of 33 rd Intl Sym on Microarchiterture, 245-257,

Dec., 2000.

[13] Cout inho L. M., Mendes J. L., Martins C. A., Dynamically
Reconfigurable Split Cache Architecture. 2008 International

Conference on Reconfigurable Computing and FPGAs, 163-168.
Ieee. doi: 10.1109/ReConFig. 2008.46.

[14] Peng, M., Sun, J., & Wang, Y. A Phase-Based Self-Tuning Algorithm

for Reconfigurable Cache. First International Conference on the
Digital Society (ICDS'07), 27-27. Ieee. doi: 10.1109/ICDS.2007.2,

2007.

[15] MicroBlaze Processor Reference Guide, Embedded Development Kit.

