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Resumen—

This paper analyzes the robustness of the king net-
works for fault tolerance. To this aim, a performance
evaluation of two well known fault tolerant routing
algorithms in king as well as 2d networks is done. Im-
munet that uses two virtual channels and Immucube,
that has a better performance while requiring three
virtual channels. Experimental results confirm the ex-
cellent behavior, both in performance and scalability,
of the king topologies in the presence of failures.

Finally, taking advantage of the topological fea-
tures of king networks, a new fault tolerance rout-
ing algorithm for these networks is presented. From
a cost/performance point of view this algorithm is a
compromise between the two previous algorithms.

I. Introduction

One of the key aspects that will determine the per-
formance of future super-computers will be the inter-
connection network. Not only at a system level, but
also within the processor itself. It is well known that
processors, such as those used in super-computers,
can contain many cores and their number will con-
tinue to grow in the near future. For example, In-
tel Labs has presented the Single-chip Cloud Com-
puter(SCC), a research microprocessor containing 48
cores. It incorporated technologies intended to scale
multi-core processors to a hundred cores and be-
yond[6]. With large amounts of cores, the impor-
tance of fast communications is key. Thus the per-
formance of the processors is heavily conditioned by
that of the interconnection network.

Our proposal is based on king topologies [14], [8]
whose propierties were presented at this very same
conference in [15]. These networks are a higher de-
gree evolutions of the classic 2D mesh and torus.
The added links allow packets to advance in eight
directions like the king on a chessboard. Meaning
that they double the degree (or radix) of their 2D
counterparts while still presenting a straightforward
layout. Furthermore, they exhibit excellent topolog-
ical properties such as high throughput, low latency,
easy partitioning and good scalability. The proposal
of topologies using diagonal links has been consid-
ered in the past, in the fields of microprocessor de-
sign[5], FPGAs[7] and interconnection networks[16].
Also mesh and toroidal topologies with added diag-
onals have been considered, both with degree six[13]
and eight[4].

This paper presents king topologies in the context
of fault tolerance. The robustness of these networks
is based on their high degree and path diversity. This
is asserted by an experimental study that compares
them with common 2D networks, like meshes or tori.
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For this, two well known fault tolerance routing al-
gorithms have been used: Immunet[9] and Immu-
cube[10], both adapted to king topologies. Experi-
mental results confirm the excellent behavior of king
topologies, both in performance and scalability.

In addition to using general algorithms, this paper
also proposes a new algorithm for fault-tolerant rout-
ing in king topologies (KFT). It relies on the topolog-
ical particularities of king networks. Experimental
results show that it offers better cost-performance
ratio than the algorithms cited above, as it affects
only local areas around faults. This leaves the rest of
the network to operate normally, allowing for higher
scalability.

A great amount of research has been carried out
around the topic of fault tolerance on interconnec-
tion networks. The first ideas in fault tolerant inter-
connection networks appeared in high performance
computers at a system level[2][1]. In these, when a
packet encounters a fault on the way to its destina-
tion, the routing algorithm tries to find an alternative
path. Rodrigo et al. [12] proposed uLBDR (Univer-
sal Logic-Based Distributed Routing) as an efficient
routing mechanism to support any irregular topol-
ogy derived from 2D meshes. The complexity of the
routers grows with the number of faults to handle
and a trade-off must be reached.

The remainder of the paper is organized as fol-
lows. Some general considerations about fault toler-
ance and the description of Immunet and Immucube
are shown in section II. In Section III the fault-
tolerance algorithm for king networks is presented.
Following, in section IV, is an experimental evalu-
ation of the networks and algorithms mentioned in
the paper. Finally, the paper concludes with section
V summarizing the main findings of the paper.

II. Fault Tolerance in Interconnection
Networks

This section starts by presenting a set of general
concepts around the topic of fault tolerance in in-
terconnection networks and the capacity of the king
topologies to operate under these conditions. In ad-
dition it describes two well known fault tolerant rout-
ing algorithms that have been selected to evaluate
these topologies when faults are considered. These
are Immunet[9] and an optimization for mesh and
toroidal topologies named Immucube[10].

The growing complexity of computer systems and
the increase of the number of components they com-
prise, causes the rise of the Mean Time Between Fail-
ures (MTBF). In the context of high-performance
computing, in some occasions the MTBF can be
shorter than the mean execution time of some ap-



plications. This makes it necessary to develop tech-
niques that allow interconnection networks to per-
form acceptably even in the presence of failures.

Fault tolerance is the ability of systems to provide
the services that they were designed for regardless
of failures they may suffer. Then, a fault tolerant
system is one that can hide the occurrence of faults,
usually by making use of redundancy within the sys-
tem. A system is said to be N -fault tolerant if it
can gracefully handle any combination of N faults.
All the algorithms studied in this paper support any
number of faults, as long as the network remains con-
nected.

A fundamental aspect of fault tolerance is the re-
dundancy. In general this is the property of hav-
ing more resources than strictly necessary for fault-
free operation. Interconnection networks in general
have some inherent degree of redundancy as there
is usually more than one way to reach a destination.
The path diversity found in king networks gives them
high redundancy. Then the probability of not find-
ing a way to the destination, or that the network has
been rendered disconnected, is very low. In addition
the loss of a number of paths connecting two nodes
has less impact in the performance.

In this paper the faults are considered to be per-
manent and non-reparable. These can occur in the
links, but also within the nodes. Some faults in the
crossbar or the message queues will affect the com-
munication between the node and one of its neigh-
bors, also causing a faulty link. A faulty node is one
that has at least one faulty link. The communication
between any pair of nodes will be possible as long as
the network remains connected. Then all nodes must
have at least one healthy link.

The mechanisms to avoid deadlock and livelock
used for fault-free networks are usually ineffective in
the presence of failures. Even in the case of a single
fault they will not prevent the network from block-
ing. Therefore fault tolerance solutions must ensure
that the network remains deadlock-free.

The algorithms presented in this paper fall into
the category of fault tolerant routing algorithms. Us-
ing the intrinsic redundancy of the networks there is
no need for additional resources and they can cope
with a high number of faults with little performance
degradation. In the event of failure, the network
is reconfigured changing the routing tables to avoid
faulty links with a special protocol.

The two algorithms used on king topologies are
Immunet and Immucube [9], [10]. Both of them
rely on the generation of a spaning tree contained in
the network. This spaning tree is created any time
a fault arise and replaces the deadlock-free routing
algorithm of the network. Immunet presents some
scalability problems. When congestion is very high,
the throughput delivered approaches that of a ring
instead of the higher degree network containing it.
This problem was solved with the introduction of Im-
mucube [10]. Immucube adds a third virtual channel.
Instead of discarding the healthy-network deadlock

avoidance mechanism that governs the escape chan-
nels, Immucube adds a third virtual escape channel
for the ring. When the network is fault-free, the
extra channel is used as a second adaptive virtual
channel.

III. King Fault Tolerance Algorithm

To further test the fault-tolerance properties of
king networks, this paper presents a new fault-
tolerant routing algorithm that exploits their partic-
ularities. It has been named King-Fault-Tolerance
(KFT). The algorithm was devised trying to achieve
the performance of Immucube at the cost of Im-
munet. Thus, it uses only two virtual channels and
its performance is close to Immucube for a low num-
ber of faults. The key feature is that it only affects
the area close to faults. Therefore, it does not dis-
turb the traffic in healthy areas. Therefore it is more
scalable than the other two algorithms.

As in Immunet, KFT uses the concept of a tree tra-
versed in preorder to create a ring. However, instead
of one ring covering the whole network, KFT creates
a small ring that encircle a faulty links. KFT takes
advantage of the high connectivity of king topologies
to allow small trees to cover fault areas, reducing the
number of packets to generate them. The concept
could be used in 2d networks, but the resulting al-
gorithm would be more complex, falling beyond the
scope of this paper.

The algorithm requires nodes to keep some local
data.

• The reconfiguration status(RS) register contains
the concatenation of two integers. On the high
order part is the identifier of the node that gen-
erated the fault-alert propagation. And on the
low order part the number of reconfiguration
processes it started.

• During the reconfiguration process, the passages
table is used describe the structure of the tree.
Later, it will guide packets around the tree.

• A register with the current amount of active re-
configuration processes in the node.

• The state register tells whether the node is in
fault mode, depending on the number of faulty
links of the node.

• A list of pending communications with neigh-
bors.

Also, the nodes must exchange some information.
This is carried by a set of special KFT packets that
only travel among neighbors, so they do not need
routing.

• The fault-alert packet requests the recipient to
become a member of the tree as a descendant of
the sender.

• The acknowledge(ACK) and decline(NACK)
packet conveys a positive or negative answer to
the fault-alert packet.

The reconfiguration process can be divided into
two algorithms. The first occurs in the nodes that
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Fig. 1. Ring or tree generated by the algorithm.

detect a failure and triggers the reconfiguration pro-
cess. The second happens when a KFT packet is
received, it can be a fault-alert or a reply, and is how
the formation of the ring takes place.

When a node senses that a link fails, it updates its
RS register, increasing the amount of reconfiguration
processes and, after stopping all normal traffic, it
sends fault-alert packets to all its neighbors. The
nodes in the vicinity, on the reception of the fault-
alert, start the second algorithm.

Depending on the kind of KFT packet received,
node behavior will differ. During the process of re-
configuration, a node can receive fault-alert packets
from different neighbors. These packets request the
recipient to join a tree, however, a node can only
belong to one tree at a time. Thus, it must choose
which request to acknowledge and which to decline.
When a node receives a fault-alert packet, it will
reply affirmatively only if the RS of the packet is
greater than the one stored in the node. Otherwise,
the node sends a decline packet back to the sender.
This mechanism causes one tree to prevail and the
others to be forgotten. The acknowledge must ful-
fill some other conditions that prevent the algorithm
from covering the whole network.

If a node receives an acknowledge(ACK) packet,
the sender is added as a child to the tree by updat-
ing the passage table, declinations(NACK) are sim-
ply ignored. In both cases (ACK and NACK), the
sender is removed from the pending communication
list. When the list is empty, the reconfiguration pro-
cess is deemed complete and normal data communi-
cations can be resumed.

It is important to note that the way in which the
RS values are used causes a single tree to eventually
cover the faulty region. Once this happens, the infor-
mation stored in the passage table guides the packets
through the tree, in a ring-like fashion, avoiding the
faulty links. As an example see figure 1.

.0.a Multiple simultaneous failures. The scenario
presented above with a single faulty link is useful to
describe the KFT ring generation algorithm. How-
ever, KFT can cope with more complex scenarios. It
can withstand multiple failures happening simulta-
neously with the reconfiguration process of previous
faults. If the new failure occurs in a healthy area,
KFT creates a new ring isolated from the existing

0,0 1,0

1,2

1,3

1,1

2,0

2,2

2,3

2,1

0,2

3,0

3,2

3,3

3,1

0,3

4,0

4,2

4,3

4,1

5,0

5,2

5,3

5,1

6,0

6,2

6,3

6,1

7,0

7,2

7,3

7,10,1

Fig. 2. Two faulty regions joined by one ring after a fault
occurring between node (1,2) and (2,2).

ones. However, if a new fault occurs close to an exist-
ing ring, then it is extended to cover the new fault. If
as a consequence of a ring increasing its size it meets
another, both are joined to form a single ring cover-
ing both faulty regions. An example of this process
can be seen in Figure 2, where the last link to fail
is that shown with . The process created a ring
that joined two existing and isolated ones. Notice
that this tree has some of its links pruned as it will
be discussed later.

The scenario in which two rings are joined as above
is not contemplated by the previous algorithm. And
under some conditions, the two regions will not join.
In the case that one of the rings is already stable
and has a higher RS.high than the reconfiguring ring.
The stable one will decline all the fault-alert packets
from the reconfiguring one. This will lead to the two
regions not joining. However this situation can be
detected and trigger a reconfiguration process with
higher RS.high, that will engulf both rings leaving
only one.

The algorithm presented above must be modified
to cope with these situations by adding two con-
ditions. First, the fault-free nodes should broad-
cast fault-alert packets if they come from a faulty
node and their RS.high is lower. The receiving node
should not change its status. This causes that a
fault-alert packet will be forwarded to a node from a
different ring whose RS.High is higher. According to
the algorithm above, this packet should be ignored,
therefore a second condition is added. This causes
that when a faulty-node receives a fault-alert from
a fault-free node, it will respond with NACK and,
after increasing its RS.high, start a new reconfigu-
ration process. As it has a higher RS.high, it has
a higher priority and will eventually merge the two
existing rings.

.0.b Optimization: pruning the tree. Once a re-
configuration process concludes, the normal traffic
on the network starts moving again. When a packet
needs to cross a faulty link it enters the ring and only
leaves when it gets closer to its destination. Obvi-
ously, the smaller the ring, the less detour the packet
must make. With this in mind, KFT has a pruning
phase that reduces the size of the tree and thus the
size of the ring. As a consequence, the latency of
packets affected by a fault is reduced.

As an example consider the ring in figure 1. In
the figure it becomes apparent that the ring is cover-
ing more nodes than necessary to wrap the faulty



region. The optimization consists in pruning leaf
nodes which are not needed. Once a node is in a
stable state and is fault-free, it can easily determine
if it is a leaf node. If there are no children in the
passage table it sends a prune message to its par-
ent and waits for the acknowledge. The parent node
clears its child from the passage table and sends the
acknowledge back. On reception the leaf node will
no longer be part of the ring. Figure 2 shows a tree
after the pruning stage.

Pruning must be done as a separate stage as some
pathological cases require some leaf node to belong
to the tree in order to successfully conclude the re-
configuration stage.

.0.c Routing. When a failure occurs, all the nodes
involved in the reconfiguration will stop normal traf-
fic flow until their passage tables are stable. Once
this happens, these packets can resume their course.
After the reconfiguration the virtual channels will
be reorganized. The escape channels will continue to
do static DOR routing. But the fully adaptive chan-
nels of the links that conform the ring will be used
exclusively by packets in fault mode. The rest of
the adaptive channels will remain adaptive. There-
fore, the functionality of the fault-free regions is not
changed and ABR routing is used as if no failure had
occurred.

In faulty regions, when a packet needs to advance
through a link that belongs to the ring, it must re-
quest the escape channel. While in the ring, packets
must use the escape channel unless they need to ad-
vance through a faulty link. Then they enter fault
mode. To the packets in fault mode a new header
will be added. This will indicate their state and also
the distance to their destination when they entered
fault mode. Then, these packets advance through the
nodes of the ring until they reach one that is closer
to their destination and can exit the ring resuming
their normal state.

In order to avoid deadlocks, packets entering or
leaving the ring must abide by some rules. Like
when a packet changes dimension in ABR, packets
entering the ring must satisfy the bubble condition.
When leaving, packets must first try to exit through
an adaptive channel. If not possible, they should
request an escape channel. However, these chan-
nels only route packets under DOR. And because
the packets exiting the ring might violate this rule,
it is necessary to re-inject them. This technique has
been used by several authors like [3] but increasing
the number of virtual channels instead of reinject the
packets.

IV. Evaluation and Results

This section presents a set of experiments that al-
low to evaluate the fault tolerance properties of king
networks compared with their 2D counterparts, con-
ventional meshes and tori. It also includes a com-
parison of the fault-tolerant routing algorithms de-
scribed. This is done evaluating their performance
as well as their resource requirements.

All experiments have been carried out with Fsin,
a functional simulator for interconnection networks
belonging to the INSEE Environment [11]. They
have been carried out on networks of four topologies
(mesh, torus, king mesh and king torus) with 16×16
and 32× 32 nodes. In order to ensure that king net-
works of 16 × 16 reach saturation, two injectors per
router have been used.

The traffic used has an uniform distribution, in-
jecting packets of 16 phits at a constant rate. The
fault generation model is random with an uniform
distribution. Performance is evaluated by consider-
ing values of throughput and average latency. To
achieve stability in the results, the values presented
on the graphs are the average of five individual ex-
periments with different random seed.

.0.a King topologies vs 2D. The results of the first
experiment show a comparison of the performance of
networks of 32 × 32 of different topologies. First, in
figure 3(a), the results for meshes and king meshes
are compared and then, those for tori and king tori
are shown in figure 3(b). Both figures show the per-
formance of healthy networks and two more exam-
ples with 8 and 16 faults. The algorithm used in
all cases is Immucube, as Immunet is known to give
poor performance in large networks and KFT is only
applicable to king topologies.

Both figures show that the loss of performance due
to faults is much less in king topologies. Meshes
show a degradation of 36% for 8 faults and 45% for
16, while king meshes only decrease in 5% and 9%
respectively. With tori, the difference is more pro-
nounced as king tori only loose 1.6% and 3.2% and
conventional tori 33% and 42% respectively.

.0.b Experiments with a single fault. Focusing
on the performance of king networks, the next ex-
periment presents a comparison of the three fault-
tolerant routing algorithms working on networks of
16×16 and 32×32. To visualize the degradation, the
performance of the healthy network is also shown.
Figure 4(a) shows throughput and latency for meshes
and figure 4(b) for tori. At low loads, before sat-
uration point, the three algorithms give the same
throughput and latency as the healthy network. At
high load, the performance loss in Immucube or KFT
is negligible and quite apparent in Immunet. This ef-
fect is more pronounced in tori.

The degradation observed in Immunet is related
to the fact that, when a fault is detected, the escape
channels stop using DOR and use the ring that cov-
ers all the nodes, leaving the escape network notably
reduced. And as the escape channels are mostly used
in saturation, the performance deteriorates. In con-
trast, both Immucube and KFT have better results
because they use DOR in the escape channels. How-
ever, the performance of KFT is slightly better as
it only affects the vicinity of the failure, while Im-
mucube does not allow packets that have encoun-
tered a fault in their way to use DOR. The latency
graphs confirm this behavior; at high loads Immunet
is slightly higher than the rest.
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Fig. 3. Throughput of 32 × 32 networks with Immucube.
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Fig. 4. Throughput and latency of king topologies with one random fault.
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Fig. 5. Throughput and latency of king topologies with several random faults.

.0.c Experiments with multiple faults. Figures 5(a)
and 5(b) show the latency and throughput of net-

works of sizes 16 × 16 with 8 random faults and of
32×32 with 32 faults. These illustrate how the algo-



rithms behave when the number of faults increases.
The tendencies observed are independent of the size
of the networks, thus the evaluation will be done to-
gether.

On meshes (Fig. 5(a)), the higher number of faults
is more noticeable as the performance loss is higher
than before. Yet Immunet still shows the high-
est degradation and both KFT and Immucube have
similar results. However, the third virtual channel
used in Immucube allows for slight improvement over
KFT, because it sacrifices adaptive channels to the
ring. On tori (Fig. 5(b)), the tendency is the same
but with a higher difference between KFT and Im-
mucube, again due to the third virtual channel. On
Immunet, the larger amount of faults increase the
probability of packets requesting escape through the
ring. This causes a faster congestion in it, therefore
hampering the traffic throughout the network.

At the beginning of the saturation area where la-
tencies are still small, KFT has higher latencies due
to the loss of adaptive channels. However as the net-
works saturate, packets in Immunet and Immucube
are forced to make longer detours through their large
rings, while KFT is able to keep latencies slightly
lower.

V. Conclusions

Current trends in super-computer design indicate
that the number of cores per processor will continue
to grow. Thus, their performance will be heavily
affected by that of the interconnection networks of
their processors. The large amount of component in
these networks increase the fault probability, affect-
ing the exploitation of super-computers. This rises
the importance of using fault-tolerant networks and
routing algorithms. In addition, these allow to im-
prove the productivity of the fabrication process, as
partially defective processors can still be used with
a diminished performance.

King topologies have been previously presented as
viable network fabric for future multi-core proces-
sors. This paper shows their performance in the con-
text of fault tolerant architectures. The high degree
and path diversity of these direct networks tolerate
multiple faults with minimum performance loss. In
addition, these networks exhibit high scalability as
shown by the experimental results. Indeed, larger
networks show less degradation even with propor-
tionally more faults.

For the evaluation of these networks, three fault
tolerant algorithms have been used. The first two,
Immunet and Immucube, were previously published
and have been adapted to king topologies. The last
one, named KFT, was specifically developed to pro-
vide fault tolerance in these networks. Experimental
results showed that KFT offers similar performance
to that of Immucube in some situations but using
less resources.
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