
Improved JPIP-compatible architecture for
video streaming of JPEG 2000 image sequences

J.J. Sánchez-Hernández, J.P. Garćıa-Ortiz, C. Martin, D. Müller
Carmelo Maturana-Espinosa and Vicente González-Ruiz European Space Agency, ESTEC

Computer Architecture and Electronics Department Noordwijk, Netherlands

University of Almeŕıa, Spain

Abstract— This paper1 presents a new architecture
for video streaming of remote sequences of JPEG 2000
images, fully compatible with the JPIP protocol. This
architecture has been developed as an improvement
for the JHelioviewer project during the first Summer
of Code organized by the European Space Agency.
It requires only a slightly modification in the way
the client/server communication is carried out, but
within the standard scope. Its main feature is to
allow an efficient video streaming of image sequences,
with the possibility of panning/zooming movements
during the reproduction. The experimental results
show that the developed improvement achieves better
quality and responsiveness values with respect to the
original approach.

Keywords— JPIP, JPEG2000, video streaming.

I. Introduction

THE powerful features offered by the novel JPEG
2000 multi-part standard [1], like lossless/lossy

compression, random access to the compressed
streams, incremental decoding or high degree of spa-
tial and quality scalability, have led it to obtain
the recognition as a state-of-the-art solution among
applications for remote browsing of high-resolution
images.

JPEG 2000, in combination with the JPIP pro-
tocol [2] defined in its Part 9 [3], has already been
successfully used in many scientific areas (e.g. tele-
microscopy [4] or tele-medicine [5]), and it has a sig-
nificant potential in any other one where large vo-
lumes of image data need to be streamed, like for
example Google Earth/Maps.

Specially in the scientific context, the images used
by the remote browsing applications are not usually
isolated, but they belong to a time sequence. For
example, in the case of the tele-pathology area, an
image is related to a tissue slide, and also belongs
to a sequence of images representing the evolution of
that tissue for a period of time.

In the astronomy context, one of the most repre-
sentative examples is the JHelioviewer project [6], de-
veloped by the European Space Agency (ESA) in co-
llaboration with the National Aeronautics and Space
Administration (NASA). The main data served by
this application is obtained from the Solar Dynamics
Observatory [7], which provides, among other data

1This work has been funded by grants from the Span-
ish Ministry of Science and Innovation (TIN2008-01117) and
Junta de Andalućıa (P08-TIC-3518 and P10-TIC-6548), in
part financed by the European Regional Development Fund
(ERDF).

products, full-disk images of the Sun taken every 10
seconds in eight different ultraviolet spectral bands
with a resolution of 4096 × 4096 pixels.

In this kind of applications the user is commonly
interested in observing not only an image alone but
also the associated sequence as a video stream. A
possible approach for developing this functionality
is to generate a video file on demand, according to
the sequence selected by the user, streaming then its
content. The main drawback of this solution is that
the main features offered by JPEG 2000 for remote
browsing (zooming and panning of the content, effi-
cient transmission of windows of interest, etc.) are
lost. Moreover, the scalability on the server side is
negatively affected by the overhead of this procedure.

When a user selects a sequence of images to browse
in JHelioviewer, a kind of video file is created, where
each frame is actually a hyper-link to an existing
JPEG 2000 image file. This video file is encapsu-
lated under a standard multi-image file format, so
any JPIP server can work with it. Therefore, the
user can either browse each frame independently, or
reproduce the sequence as a common video with a de-
fined frame-rate. In both cases the powerful features
of the standard can be exploited by the user, being
possible, for instance, to make a zoom during the
video reproduction; the transmission is also adapted
according to the window of interest requested by the
client. A minimal data overhead is generated in the
server side due to the creation of the hyperlinked
video file, and the scalability is not reduced at all.

The approach of JHelioviewer for video streaming
of image sequences is fully JPIP-compatible, but not
completely efficient, specially because of the proto-
col itself. JPIP offers a basic functionality for video
streaming, but mainly oriented for Motion JPEG
2000 files. It does not provide enough flexibility for
dealing with this type of developments, as well as its
definition is far from complete in these cases.

This paper presents the work carried out during
the first Summer of Code of the European Space
Agency. Its goal has been to modify the JPIP archi-
tecture of JHelioviewer in order to improve the video
streaming, maintaining a fully compatibility with the
standard, although giving an alternative meaning to
some of its definitions. The results show a signifi-
cant gain in responsiveness, allowing the user to start
playing the video almost immediately, without in-
terruptions or initial preloading. The average video

quality, during its reproduction, is also noticeably
improved.

The rest of the paper is organized as follows: in
Section II related work is analyzed. Section III is
dedicated to explaining the proposed solution, which
is later evaluated in Section IV. The paper ends with
some conclusions and future work (Section V).

II. Related work

There do not exist works in the literature related
to the context of the problem explained in the intro-
duction section (video-streaming using JPEG 2000
standard in JHelioviewer). Anyway, we have found
several works focused on video-streaming using the
same standard which are described in the following
lines.

Naman and Taubman [8] show a JPEG 2000-Based
Scalable Interactive Video (JSIV) system. It relies on
the following concepts: video sequences are stored
as independent JPEG 2000 frames to provide qua-
lity and spatial resolution scalability, prediction and
conditional replenishment of JPEG 2000 code-blocks
to exploit temporal redundancy and loosely coupled
server and client policies. The server optimally se-
lects the best number of quality layers for each code-
block transmitted and the client attempts to produce
the best possible reconstructed frames from the data.

In addition, an extension of the JSIV system was
presented based on the use of motion compensation
to improve prediction. Experimental results confir-
med the efficacy of JSIV when motion compensa-
tion is employed. In general, prediction is improved
whenever the actual underlying motion can be mo-
deled reasonably well.

JSIV, with or without motion compensation, pro-
vides meaningfully better interactivity compared to
existing streaming schemes. This improvement is
due to the flexible prediction policy.

In [9], Lee and Qiao propose an efficient rate con-
trol algorithm based on TCP-Friendly Rate Control
(TFRC) and the stream scaler for streaming Motion-
JPEG 2000 video over the Internet. TFRC is a
protocol to solve the network congestion problem
based on the computation of the next sending rate
by means of the throughput of TCP connection. The
stream scaler algorithm presents a useful feature of
quality scalability that divide the video into multiple
layers with a certain range of bit-rate, so each layer
can be adapted to a required network bandwith for
the transmission. According to the sending rate, the
rate controller determines which is the most appro-
priate layer to be sent.

The results of the experiments show that this
approach adaptively controls the rates of Motion-
JPEG 2000 video, consequently network congestion
results only in a graceful degradation of video qua-
lity.

Vetro et al. describe in [10] a scalable video strea-
ming system based on JPEG 2000 standard over li-
mited bandwidth networks oriented towards survei-
llance systems. It offers several streaming methods

and an adaptive rate control algorithm for JPEG
2000 transcoding.

Respecting to the streaming methods, we can find
the following ones: frame-by-frame where the spa-
tial quality of regions of interest (ROIs) and back-
ground are controlled in a frame-by-frame manner,
background refresh where the ROIs are transmitted
successively with an occasional background refresh,
therefore ROIs are superimposed on the background,
and mosaic streaming, which is similar to background
refresh mode, but it superimposes successive ROI
images on a background in a mosaic style. It is really
useful for behavior analysis and scene browsing.

The rate control algorithm allocates rate to each
frame in a sequence based on target rate, buffer occu-
pancy and ROI information. The key components in-
clude variable rate allocation introducing a buffer to
absorb the variations in allocated rate to each frame,
frame skipping where periodic frames with no ROI
defined are skipped driving the buffer level towards
its lower margin for future frames with ROI informa-
tion and quality stabilization to establish a period in
which the quality layers will be held stable. The
experimental results show that the algorithm out-
performs the reference uniform rate control method.
The complexity of the transcoding technique is very
low.

Lastly, Itakura et al. [11] present a JPEG 2000
based real-time scalable video communication sys-
tem developed in Sony, named as “BEAM” video
system. The objectives of this system are: scalable
video communication and real-time communication.
Internet Engineering Task Force (IETF) streaming
protocols, with their methods based on Real-time
Transport Protocol (RTP) and Real Time Streaming
Protocol (RTSP) for the delivery of bit-streams with
real-time requirements, are extended to handle scala-
ble delivery of video data from a single layered coding
data to heterogeneous devices and different resolu-
tion display such as HDTV, standard TV, PDA and
mobile phone.

Real-time ARQ (RT-ARQ) is proposed to solve the
QoS issue for real-time applications because of the
low coding delay JPEG 2000 codec. Moreover, va-
rious network adaptive control techniques, rate con-
trol, Forward Error Correction (FEC) and RT-ARQ
error controls are included in the system to achieve
high transmission quality.

All these approaches can not be directly applied to
the JHelioviewer context according to how the data
is handled and transmitted. Moreover, many of these
commented works do not maintain a fully compati-
bility with the JPIP protocol.

III. Proposal

JHelioviewer is based on a client-server architec-
ture. The communication between the client-side
browser and the JPIP server is based on request
and response messaging using JPIP on top of HTTP.
The target JPEG 2000 images are stored in an image
repository, while metadata extracted from header in-

formation is saved in a metadata repository, so users
can search for the metadata to locate data of interest.

Using JPIP, a client can request a sequence of ima-
ges by means of different techniques. One of the most
used (for example, in kdu show and kdu server [12])
it is based on the incremental retrieval of JPEG 2000
images. In this technique, the client controls the
amount of data that the server sends using a para-
meter in the request that specifies the maximun size
of the response from the server. For example, when
the client sends the message:

GET /image.jp2?rsiz=512,512&fsiz=1024,

1024&len=2000...

the client is requesting a WOI of the image
image.jp2 with a size of 512 × 512 placed within
the maximum resolution level with a size equal or
smaller than 1024 × 1024. It is also specified that
the response should be equal or less than 2000 bytes.
When the client receives the whole response from the
server, it will repeat the same process until the desi-
red WOI is complete, ranging the len parameter if
necessary for balancing the data flow.

A simple extension of the last procedure can be
used to send a sequence of images. In this con-
text the client specifies in its request a range of ima-
ges (instead of a single image) and a maximum res-
ponse size. JHelioviewer sends different requests of
15 frames in each one, or less if the total number of
them is not multiple of 15.

For example, for an image sequence of 160 frames,
the client could send the next messages:

GET context=jpxl<0-14>&len=46557...

GET context=jpxl<15-29>&len=58196...

...

GET context=jpxl<150-159>&len=177597...

In this case, the server sends approximately the
same amount of data for each frame of the range spe-
cified in every request, although this is not specified
in the JPIP standard.

Unfortunately, this technique, based on a stop-
and-wait data-flow control algorithm, has several
drawbacks when we are performing an interactive
retrieval of a sequence of images. The first one is
related to the overhead produced by the control be-
cause a large number of requests is generally needed
to retrieve the total sequence. A second disadvantage
is focused on the quality of the reconstructed video
at the receiver because it is quite difficult the syn-
chronization between the player and the server. For
this reason, the quality of the reconstructed images
(that is proportional to the amount of data received
per image) can be very variable and therefore, un-
pleasant for the user due to the oscillations of the
available bandwidth.

Considering the previous comments, we propose a
data-flow control algorithm based on an estimation
of the available bandwidth between the server and
the client, and the picture rate of the sequence at the
receiver. As the experimental results demonstrate,

our proposal is effective and fully adapted to JPIP,
as it uses the standard parameters [2]: mbw (max-
imun bandwidth) and srate (sampling rate), which
are defined to control the data-flow of the transmi-
ssion of Motion JPEG 2000 video (very similar to the
transmission of JPEG 2000 image sequences). The
len parameter is not used in our data-flow control
algorithm.

In order to understand how these parameters are
used, let’s suppose that the server receives a re-
quest of a sequence of frames to be displayed using
a frame-rate of 20 pictures/second (srate=20) and
the estimation of the available bandwidth is 10
Mbits/second (mbw=10). In this situation the server
should send

107 bits
second

20 images
second

= 0.5 Mbits/image.

In the described implementation, the client
communicates to the server the available bandwidth
and the picture-rate in the following situations:

1. When the client observes a significant difference
between the estimated bandwidth and the real
one.

2. When the user changes the frame-rate of the
image sequence.

To solve the problem with the overhead produced
by the large number of requests performed to retrieve
the total sequence, we have modified the communica-
tion schema taking into account that the server res-
ponse is always segmented in chunks (usually with a
length of 1KB). Therefore, on the client side, when
the user specifies a WOI, the client sends only one
request. For example, in order to play a 160-frames
video at 20 fps with a bandwidth of 10 Mbits/second,
JHelioviewer will send just one request to the server
as follows:

GET context=jpxl<0-159>&pref=mbw:

10M&srate=20&...

On the server side, the server checks if a new re-
quest is received just after sending each chunk. If a
new WOI request is received, it will send an empty
chunk, in order to complete correctly the current res-
ponse, and it will attend the new request. We have
considered the WOI requests as cumulative, so the
client wouldn’t have to repeat some parameter values
in each request, because the parameter values can be
kept along the same session.

The indices of the compositing layers associated
with a codestream context can be supplied in two
ways. For example, if we have a JPX file with 150
frames we can do the next queries:

GET context=jpxl<0-149>&...

1) In this case we have a range which first value
is smaller than the second one. The server will send
all the images of the JPX file from first (0) to last
(149).

GET context=jpxl<20-19>&...

2) In this case we have a range which first value is
greater than the second one. The server will send all
the images of the JPX file using a circular mode.

We have established two operational modes on
client and server side: image and video mode.

• Image Mode
Client: This mode is enabled when an user opens
a new video or the video is paused by the
user (This is the default operating mode). The
queries in this mode not contain the client prefe-
rences: mbw (max bandwidth) and srate (sam-
pling rate). These client preferences only can be
used in video mode.
Server: In this case, the server not send any
packets from the next frame until it has sent all
the packets from the current frame.

• Video Mode
Client: This mode is enabled when the video is
playing. In this mode the queries must contain
the client preferences: mbw (max bandwidth)
and srate (sampling rate).
The client needs to estimate the arrival time of
each packet and calculate an estimation of the
bandwidth. This estimated bandwidth will be
notified to the server when ocurrs a variation
that exceed a threshold established by the client.
The client also must notify to the server if the
user has changed the frame-rate.
Server: In this case, the server calculates the
number of bytes that must be sent for each
frame.

IV. Evaluation

In this section a comparison between the origi-
nal esa jpip server and our proposal implemented
on the esa jpip server has been carried out. The
experiments show the quality of the reconstructed
video when the user plays a video sequence without
interruptions i.e., there is no interactivity.

The experiments have been performed in a simu-
lated scenario. Both, the original esa jpip server

and the improved esa jpip server were running on
a machine at the University of Almeŕıa, Spain. The
client was the JHelioviewer browser [6], running on
the same network. The available bandwidth between
client and server has been controlled with trickle

[13], a lightweight userspace bandwidth shaper.
The video used in the experiments is a linked JPX

file created with 444 frames of the Sun of 4096×4096
pixels with 8 bits/component, and compressed with
JPEG 2000 using the irreversible path, with 8 quality
layers and 9 resolution levels with RPCL progression.
The precinct sizes are set as 128 × 128. The images
were captured by the SDO Observatory using the
AIA Instrument, in the 17.1 nm channel, between
the time 00:00:00 of the day 2011/05/24 and the time
00:00:00 of the day 2011/05/26. A time step of 3
minutes was selected.

The sequence of WOIs (x, y, width, height, r) that
has been used during the visualization of the video

is as follows: (0, 0, 512, 512, 5), (0, 0, 512, 512, 6),
(127, 127, 639, 639, 6). We refer to r as the resolu-
tion of the image, with r = 0 corresponding to the
lowest avilable resolution and r = D corresponding
to the original image resolution. D is the number of
wavelet decomposition levels, or stages.

In the experiments, the user requests the defined
image sequence using a WOI and waits until the com-
plete sequence has been received (after several passes
depending on the selected frame-rate and the avai-
lable bandwidth). The download and upload band-
width consumption have been set to 150 KB/s and
64 KB/s, and the video frame rate has been set to
20 frames per second.

In the context of the remote browsing systems it is
very interesting to evaluate the quality of the recons-
truction of the served images, measured by means
of the PSNR [dB] versus the time [seconds] when
the images have been displayed at the receiver. This
measure is related to the user experience because the
user always wants to see the best quality as soon as
possible.

Figures 1, 2 and 3 show that our proposal can
achieve better PSNR values in less time, which trans-
lates to a better viewing experience. The results
show that the original esa jpip server can’t dis-
play the video at 20 frames per second with the
available bandwidth during the first seconds of play,
while the improved esa jpip server gets better
PSNR values along the transmission. When the
PSNR value of the video stream at the client is
between 10 and 20 dBs, a black frame is shown at
the client because it has not yet received any data
from the server.

Original esa_jpip_server
Improved esa_jpip_server

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

P
S

N
R

 [
d
B

]

Time [seconds]

WOI: (0, 0, 512, 512, 5)

Fig. 1. Experiment 1. WOI located in the coordinates
(0, 0, 512, 512) with a resolution image of 512 × 512

V. Conclusions

The experiments results show that our proposal
implemented on the ESA JPIP server achieves better
quality and responsiveness values respect to the ori-
ginal approach. Moreover, our proposal is effective
and fully compliant with the JPIP standard, because
it based on the use of parameters which are defined
to control the data-flow of the transmission of Mo-
tion JPG 2000 video.

Original esa_jpip_server
Improved esa_jpip_server

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

P
S

N
R

 [
d
B

]

Time [seconds]

WOI: (0, 0, 512, 512, 6)

Fig. 2. Experiment 2. WOI located in the coordinates
(0, 0, 512, 512) with a resolution image of 1024 × 1024

Original esa_jpip_server
Improved esa_jpip_server

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

P
S

N
R

 [
d
B

]

Time [seconds]

WOI: (127, 127, 639, 639, 6)

Fig. 3. Experiment 3. WOI located in the coordinates
(127, 127, 639, 639) with a resolution image of 1024×1024

Referencias

[1] International Organization for Standardization, “Infor-
mation Technology - JPEG 2000 Image Coding System
- Core Coding System,” ISO/IEC 15444-1:2004, Septem-
ber 2004.

[2] D. S. Taubman and R. Prandolim, “Architecture, Phi-
losophy and Perfomance of JPIP: Internet Protocol Stan-
dard for JPEG2000,” in International Symposium on Vi-
sual Communications and Image Processing, Julio 2003,
vol. 5150, pp. 649–663.

[3] International Organization for Standardization, “Infor-
mation Technology - JPEG 2000 Image Coding System
- Interactivity Tools, APIs and Protocols,” ISO/IEC
15444-9:2005, November 2005.

[4] V. Tuominen and J. Isola, “The application of JPEG
2000 in virtual microscopy,” Journal of Digital Imaging,
2007.

[5] K. Krishnan, M.W. Marcellin, A. Bilgin, and M.S. Nadar,
“Efficient transmission of compressed data for remote
volume visualization,” IEEE Transactions on Medical
Imaging, vol. 25, pp. 1189–1199, September 2006.

[6] D. Müeller, B. Fleck, G. Dimitoglou, B. W. Caplins,
D. E. Amadigwe, J. P. Garcia Ortiz, A. Alexanderian
B. Wamsler, V. Keith Hughitt, and J. Ireland, “JHe-
lioviewer: Visualizing large sets of solar images using
JPEG 2000,” Computing in Science and Engineering,
vol. 11, no. 5, pp. 38–47, September 2009.

[7] W. Pesnell, “The Solar Dynamics Observatory: Your eye
on the Sun,” in 37th COSPAR Scientific Assembly, 2008,
vol. 37 of COSPAR, Plenary Meeting, pp. 2412–+.

[8] A.T. Naman and D. Taubman, “Jpeg2000-based scala-
ble interactive video (jsiv) with motion compensation,”
Image Processing, IEEE Transactions on, vol. 20, no. 9,
pp. 2650 –2663, sept. 2011.

[9] M.H. Lee and Rong-Yu Qiao, “Rate control with stream
scaling for motion-jpeg2000 video over the internet,” in
Broadband Multimedia Systems and Broadcasting, 2008
IEEE International Symposium on, 31 2008-april 2 2008,
pp. 1 –5.

[10] Anthony Vetro, Derek Schwenke, Toshihiko Hata, and
Naoki Kuwahara, “Scalable video streaming based on
jpeg2000 transcoding with adaptive rate control,” Adv.
MultiMedia, vol. 2007, pp. 7–7, January 2007.

[11] E. Itakura, S. Futemma, Guijin Wang, and K. Yamane,
“Jpeg2000 based real-time scalable video communication
system over the internet,” in Consumer Communications
and Networking Conference, 2005. CCNC. 2005 Second
IEEE, jan. 2005, pp. 539 – 543.

[12] “Kakadu JPEG 2000 SDK,” http://www.
kakadusoftware.com.

[13] “Trickle: A lightweight userspace bandwidth shaper,”
http://monkey.org/~marius/trickle.

